This repository has been archived on 2023-03-16. You can view files and clone it, but cannot push or open issues or pull requests.
SAMSUNG_S21_FHD_ISP568_BC-XGD/project/Listings/board.lst

4869 lines
186 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

L 1 "..\src\board\board.c"
N/*******************************************************************************
N* Copyright (C) 2019-2022, ISP Systems (R),All Rights Reserved.
N*
N* File: board.c
N* Description 鏉跨骇鏂囦欢
N* Version V0.1
N* Date 2020-12-07
N* Author linyw
N*******************************************************************************/
N#include "board.h"
L 1 "..\src\board\board.h" 1
N/*******************************************************************************
N* Copyright (C) 2019-2022, 518/568 Systems (R),All Rights Reserved.
N*
N* File: board.h
N* Description: baord 鍒濆<E98D92>鍖栧ご鏂囦欢
N* Version: V0.1
N* Date: 2020-01-08
N* Author: lzy
N *******************************************************************************/
N
N#ifndef __BOARD_H__
N#define __BOARD_H__
N
Nvoid board_Init(void);
N
N#endif
L 11 "..\src\board\board.c" 2
N#include "hal_system.h"
L 1 "..\src\sdk\include\hal_system.h" 1
N/*******************************************************************************
N*
N*
N* File: hal_system.h
N* Description hal 閫氱敤绯荤粺鎺ュ彛澶存枃浠<E69E83>
N* Version V0.1
N* Date 2021-05-21
N* Author lzy
N *******************************************************************************/
N#ifndef __HAL_SYSTEM_H__
N#define __HAL_SYSTEM_H__
N/*******************************************************************************
N* 1.Included files
N*******************************************************************************/
N#include "tau_common.h"
L 1 "..\src\common\tau_common.h" 1
N/*******************************************************************************
N*
N*
N* File: tau_common.h
N* Description 通用数据类型相关定义头文件
N* Version V0.1
N* Date 2020-09-07
N* Author lzy
N *******************************************************************************/
N
N#ifndef __TAU_COMMON_H
N#define __TAU_COMMON_H
N
N/*******************************************************************************
N* 1.Included files
N*******************************************************************************/
N#include "stdint.h"
L 1 "C:\Keil_v5\ARM\ARMCC\Bin\..\include\stdint.h" 1
N/* Copyright (C) ARM Ltd., 1999,2014 */
N/* All rights reserved */
N
N/*
N * RCS $Revision$
N * Checkin $Date$
N * Revising $Author: agrant $
N */
N
N#ifndef __stdint_h
N#define __stdint_h
N#define __ARMCLIB_VERSION 5060037
N
N #ifdef __INT64_TYPE__
S /* armclang predefines '__INT64_TYPE__' and '__INT64_C_SUFFIX__' */
S #define __INT64 __INT64_TYPE__
N #else
N /* armcc has builtin '__int64' which can be used in --strict mode */
N #define __INT64 __int64
N #define __INT64_C_SUFFIX__ ll
N #endif
N #define __PASTE2(x, y) x ## y
N #define __PASTE(x, y) __PASTE2(x, y)
N #define __INT64_C(x) __ESCAPE__(__PASTE(x, __INT64_C_SUFFIX__))
N #define __UINT64_C(x) __ESCAPE__(__PASTE(x ## u, __INT64_C_SUFFIX__))
N #if defined(__clang__) || (defined(__ARMCC_VERSION) && !defined(__STRICT_ANSI__))
X #if 0L || (1L && !0L)
N /* armclang and non-strict armcc allow 'long long' in system headers */
N #define __LONGLONG long long
N #else
S /* strict armcc has '__int64' */
S #define __LONGLONG __int64
N #endif
N
N #ifndef __STDINT_DECLS
N #define __STDINT_DECLS
N
N #undef __CLIBNS
N
N #ifdef __cplusplus
S namespace std {
S #define __CLIBNS std::
S extern "C" {
N #else
N #define __CLIBNS
N #endif /* __cplusplus */
N
N
N/*
N * 'signed' is redundant below, except for 'signed char' and if
N * the typedef is used to declare a bitfield.
N */
N
N /* 7.18.1.1 */
N
N /* exact-width signed integer types */
Ntypedef signed char int8_t;
Ntypedef signed short int int16_t;
Ntypedef signed int int32_t;
Ntypedef signed __INT64 int64_t;
Xtypedef signed __int64 int64_t;
N
N /* exact-width unsigned integer types */
Ntypedef unsigned char uint8_t;
Ntypedef unsigned short int uint16_t;
Ntypedef unsigned int uint32_t;
Ntypedef unsigned __INT64 uint64_t;
Xtypedef unsigned __int64 uint64_t;
N
N /* 7.18.1.2 */
N
N /* smallest type of at least n bits */
N /* minimum-width signed integer types */
Ntypedef signed char int_least8_t;
Ntypedef signed short int int_least16_t;
Ntypedef signed int int_least32_t;
Ntypedef signed __INT64 int_least64_t;
Xtypedef signed __int64 int_least64_t;
N
N /* minimum-width unsigned integer types */
Ntypedef unsigned char uint_least8_t;
Ntypedef unsigned short int uint_least16_t;
Ntypedef unsigned int uint_least32_t;
Ntypedef unsigned __INT64 uint_least64_t;
Xtypedef unsigned __int64 uint_least64_t;
N
N /* 7.18.1.3 */
N
N /* fastest minimum-width signed integer types */
Ntypedef signed int int_fast8_t;
Ntypedef signed int int_fast16_t;
Ntypedef signed int int_fast32_t;
Ntypedef signed __INT64 int_fast64_t;
Xtypedef signed __int64 int_fast64_t;
N
N /* fastest minimum-width unsigned integer types */
Ntypedef unsigned int uint_fast8_t;
Ntypedef unsigned int uint_fast16_t;
Ntypedef unsigned int uint_fast32_t;
Ntypedef unsigned __INT64 uint_fast64_t;
Xtypedef unsigned __int64 uint_fast64_t;
N
N /* 7.18.1.4 integer types capable of holding object pointers */
N#if __sizeof_ptr == 8
X#if 4 == 8
Stypedef signed __INT64 intptr_t;
Stypedef unsigned __INT64 uintptr_t;
N#else
Ntypedef signed int intptr_t;
Ntypedef unsigned int uintptr_t;
N#endif
N
N /* 7.18.1.5 greatest-width integer types */
Ntypedef signed __LONGLONG intmax_t;
Xtypedef signed long long intmax_t;
Ntypedef unsigned __LONGLONG uintmax_t;
Xtypedef unsigned long long uintmax_t;
N
N
N#if !defined(__cplusplus) || defined(__STDC_LIMIT_MACROS)
X#if !0L || 0L
N
N /* 7.18.2.1 */
N
N /* minimum values of exact-width signed integer types */
N#define INT8_MIN -128
N#define INT16_MIN -32768
N#define INT32_MIN (~0x7fffffff) /* -2147483648 is unsigned */
N#define INT64_MIN __INT64_C(~0x7fffffffffffffff) /* -9223372036854775808 is unsigned */
N
N /* maximum values of exact-width signed integer types */
N#define INT8_MAX 127
N#define INT16_MAX 32767
N#define INT32_MAX 2147483647
N#define INT64_MAX __INT64_C(9223372036854775807)
N
N /* maximum values of exact-width unsigned integer types */
N#define UINT8_MAX 255
N#define UINT16_MAX 65535
N#define UINT32_MAX 4294967295u
N#define UINT64_MAX __UINT64_C(18446744073709551615)
N
N /* 7.18.2.2 */
N
N /* minimum values of minimum-width signed integer types */
N#define INT_LEAST8_MIN -128
N#define INT_LEAST16_MIN -32768
N#define INT_LEAST32_MIN (~0x7fffffff)
N#define INT_LEAST64_MIN __INT64_C(~0x7fffffffffffffff)
N
N /* maximum values of minimum-width signed integer types */
N#define INT_LEAST8_MAX 127
N#define INT_LEAST16_MAX 32767
N#define INT_LEAST32_MAX 2147483647
N#define INT_LEAST64_MAX __INT64_C(9223372036854775807)
N
N /* maximum values of minimum-width unsigned integer types */
N#define UINT_LEAST8_MAX 255
N#define UINT_LEAST16_MAX 65535
N#define UINT_LEAST32_MAX 4294967295u
N#define UINT_LEAST64_MAX __UINT64_C(18446744073709551615)
N
N /* 7.18.2.3 */
N
N /* minimum values of fastest minimum-width signed integer types */
N#define INT_FAST8_MIN (~0x7fffffff)
N#define INT_FAST16_MIN (~0x7fffffff)
N#define INT_FAST32_MIN (~0x7fffffff)
N#define INT_FAST64_MIN __INT64_C(~0x7fffffffffffffff)
N
N /* maximum values of fastest minimum-width signed integer types */
N#define INT_FAST8_MAX 2147483647
N#define INT_FAST16_MAX 2147483647
N#define INT_FAST32_MAX 2147483647
N#define INT_FAST64_MAX __INT64_C(9223372036854775807)
N
N /* maximum values of fastest minimum-width unsigned integer types */
N#define UINT_FAST8_MAX 4294967295u
N#define UINT_FAST16_MAX 4294967295u
N#define UINT_FAST32_MAX 4294967295u
N#define UINT_FAST64_MAX __UINT64_C(18446744073709551615)
N
N /* 7.18.2.4 */
N
N /* minimum value of pointer-holding signed integer type */
N#if __sizeof_ptr == 8
X#if 4 == 8
S#define INTPTR_MIN INT64_MIN
N#else
N#define INTPTR_MIN INT32_MIN
N#endif
N
N /* maximum value of pointer-holding signed integer type */
N#if __sizeof_ptr == 8
X#if 4 == 8
S#define INTPTR_MAX INT64_MAX
N#else
N#define INTPTR_MAX INT32_MAX
N#endif
N
N /* maximum value of pointer-holding unsigned integer type */
N#if __sizeof_ptr == 8
X#if 4 == 8
S#define UINTPTR_MAX UINT64_MAX
N#else
N#define UINTPTR_MAX UINT32_MAX
N#endif
N
N /* 7.18.2.5 */
N
N /* minimum value of greatest-width signed integer type */
N#define INTMAX_MIN __ESCAPE__(~0x7fffffffffffffffll)
N
N /* maximum value of greatest-width signed integer type */
N#define INTMAX_MAX __ESCAPE__(9223372036854775807ll)
N
N /* maximum value of greatest-width unsigned integer type */
N#define UINTMAX_MAX __ESCAPE__(18446744073709551615ull)
N
N /* 7.18.3 */
N
N /* limits of ptrdiff_t */
N#if __sizeof_ptr == 8
X#if 4 == 8
S#define PTRDIFF_MIN INT64_MIN
S#define PTRDIFF_MAX INT64_MAX
N#else
N#define PTRDIFF_MIN INT32_MIN
N#define PTRDIFF_MAX INT32_MAX
N#endif
N
N /* limits of sig_atomic_t */
N#define SIG_ATOMIC_MIN (~0x7fffffff)
N#define SIG_ATOMIC_MAX 2147483647
N
N /* limit of size_t */
N#if __sizeof_ptr == 8
X#if 4 == 8
S#define SIZE_MAX UINT64_MAX
N#else
N#define SIZE_MAX UINT32_MAX
N#endif
N
N /* limits of wchar_t */
N /* NB we have to undef and redef because they're defined in both
N * stdint.h and wchar.h */
N#undef WCHAR_MIN
N#undef WCHAR_MAX
N
N#if defined(__WCHAR32) || (defined(__ARM_SIZEOF_WCHAR_T) && __ARM_SIZEOF_WCHAR_T == 4)
X#if 0L || (0L && __ARM_SIZEOF_WCHAR_T == 4)
S #define WCHAR_MIN 0
S #define WCHAR_MAX 0xffffffffU
N#else
N #define WCHAR_MIN 0
N #define WCHAR_MAX 65535
N#endif
N
N /* limits of wint_t */
N#define WINT_MIN (~0x7fffffff)
N#define WINT_MAX 2147483647
N
N#endif /* __STDC_LIMIT_MACROS */
N
N#if !defined(__cplusplus) || defined(__STDC_CONSTANT_MACROS)
X#if !0L || 0L
N
N /* 7.18.4.1 macros for minimum-width integer constants */
N#define INT8_C(x) (x)
N#define INT16_C(x) (x)
N#define INT32_C(x) (x)
N#define INT64_C(x) __INT64_C(x)
N
N#define UINT8_C(x) (x ## u)
N#define UINT16_C(x) (x ## u)
N#define UINT32_C(x) (x ## u)
N#define UINT64_C(x) __UINT64_C(x)
N
N /* 7.18.4.2 macros for greatest-width integer constants */
N#define INTMAX_C(x) __ESCAPE__(x ## ll)
N#define UINTMAX_C(x) __ESCAPE__(x ## ull)
N
N#endif /* __STDC_CONSTANT_MACROS */
N
N #ifdef __cplusplus
S } /* extern "C" */
S } /* namespace std */
N #endif /* __cplusplus */
N #endif /* __STDINT_DECLS */
N
N #ifdef __cplusplus
S #ifndef __STDINT_NO_EXPORTS
S using ::std::int8_t;
S using ::std::int16_t;
S using ::std::int32_t;
S using ::std::int64_t;
S using ::std::uint8_t;
S using ::std::uint16_t;
S using ::std::uint32_t;
S using ::std::uint64_t;
S using ::std::int_least8_t;
S using ::std::int_least16_t;
S using ::std::int_least32_t;
S using ::std::int_least64_t;
S using ::std::uint_least8_t;
S using ::std::uint_least16_t;
S using ::std::uint_least32_t;
S using ::std::uint_least64_t;
S using ::std::int_fast8_t;
S using ::std::int_fast16_t;
S using ::std::int_fast32_t;
S using ::std::int_fast64_t;
S using ::std::uint_fast8_t;
S using ::std::uint_fast16_t;
S using ::std::uint_fast32_t;
S using ::std::uint_fast64_t;
S using ::std::intptr_t;
S using ::std::uintptr_t;
S using ::std::intmax_t;
S using ::std::uintmax_t;
S #endif
N #endif /* __cplusplus */
N
N#undef __INT64
N#undef __LONGLONG
N
N#endif /* __stdint_h */
N
N/* end of stdint.h */
L 18 "..\src\common\tau_common.h" 2
N#include "math.h"
L 1 "C:\Keil_v5\ARM\ARMCC\Bin\..\include\math.h" 1
N/*
N * math.h: ANSI 'C' (X3J11 Oct 88) library header, section 4.5
N * Copyright (C) Codemist Ltd., 1988
N * Copyright 1991-1998,2004-2006,2014 ARM Limited. All rights reserved
N */
N
N/*
N * RCS $Revision$ Codemist 0.03
N * Checkin $Date$
N * Revising $Author: statham $
N */
N
N/*
N * Parts of this file are based upon fdlibm:
N *
N * ====================================================
N * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
N *
N * Developed at SunSoft, a Sun Microsystems, Inc. business.
N * Permission to use, copy, modify, and distribute this
N * software is freely granted, provided that this notice
N * is preserved.
N * ====================================================
N */
N
N#ifndef __math_h
N#define __math_h
N#define __ARMCLIB_VERSION 5060037
N
N#if defined(__clang__) || (defined(__ARMCC_VERSION) && !defined(__STRICT_ANSI__))
X#if 0L || (1L && !0L)
N /* armclang and non-strict armcc allow 'long long' in system headers */
N #define __LONGLONG long long
N#else
S /* strict armcc has '__int64' */
S #define __LONGLONG __int64
N#endif
N
N/*
N * Some of these declarations are new in C99. To access them in C++
N * you can use -D__USE_C99_MATH (or -D__USE_C99_ALL).
N */
N#ifndef __USE_C99_MATH
N #if defined(__USE_C99_ALL) || (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__) || (defined(__cplusplus) && 201103L <= __cplusplus)
X #if 0L || (1L && 199901L <= 199901L) || (0L && 201103L <= __cplusplus)
N #define __USE_C99_MATH 1
N #endif
N#endif
N
N#define _ARMABI __declspec(__nothrow)
N#ifdef __TARGET_ARCH_AARCH64
S# define _ARMABI_SOFTFP __declspec(__nothrow)
N#else
N# define _ARMABI_SOFTFP __declspec(__nothrow) __attribute__((__pcs__("aapcs")))
N# define __HAVE_LONGDOUBLE 1
N#endif
N#define _ARMABI_PURE __declspec(__nothrow) __attribute__((const))
N#ifdef __FP_FENV_EXCEPTIONS
S# define _ARMABI_FPEXCEPT _ARMABI
N#else
N# define _ARMABI_FPEXCEPT _ARMABI __attribute__((const))
N#endif
N
N#ifdef __cplusplus
S#define _ARMABI_INLINE inline
S#define _ARMABI_INLINE_DEF inline
N#elif defined __GNUC__ || defined _USE_STATIC_INLINE
X#elif 1L || 0L
N#define _ARMABI_INLINE static __inline
N#define _ARMABI_INLINE_DEF static __inline
N#elif (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__)
X#elif (1L && 199901L <= 199901L)
S#define _ARMABI_INLINE inline
S#define _ARMABI_INLINE_DEF static inline
S#else
S#define _ARMABI_INLINE __inline
S#define _ARMABI_INLINE_DEF __inline
N#endif
N
N#ifdef __TARGET_ARCH_AARCH64
S# define _SOFTFP
N#else
N# define _SOFTFP __attribute__((__pcs__("aapcs")))
N#endif
N
N /*
N * If the compiler supports signalling nans as per N965 then it
N * will define __SUPPORT_SNAN__, in which case a user may define
N * _WANT_SNAN in order to obtain the nans function, as well as the
N * FP_NANS and FP_NANQ classification macros.
N */
N#if defined(__SUPPORT_SNAN__) && defined(_WANT_SNAN)
X#if 0L && 0L
S#pragma import(__use_snan)
N#endif
N
N/*
N * Macros for our inline functions down below.
N * unsigned& __FLT(float x) - returns the bit pattern of x
N * unsigned& __HI(double x) - returns the bit pattern of the high part of x
N * (high part has exponent & sign bit in it)
N * unsigned& __LO(double x) - returns the bit pattern of the low part of x
N *
N * We can assign to __FLT, __HI, and __LO and the appropriate bits get set in
N * the floating point variable used.
N *
N * __HI & __LO are affected by the endianness and the target FPU.
N */
N#define __FLT(x) (*(unsigned *)&(x))
N#if defined(__ARM_BIG_ENDIAN) || defined(__BIG_ENDIAN)
X#if 0L || 0L
S# define __LO(x) (*(1 + (unsigned *)&(x)))
S# define __HI(x) (*(unsigned *)&(x))
N#else /* !defined(__ARM_BIG_ENDIAN) && !defined(__BIG_ENDIAN) */
N# define __HI(x) (*(1 + (unsigned *)&(x)))
N# define __LO(x) (*(unsigned *)&(x))
N#endif /* !defined(__ARM_BIG_ENDIAN) && !defined(__BIG_ENDIAN) */
N
N# ifndef __MATH_DECLS
N# define __MATH_DECLS
N
N
N/*
N * A set of functions that we don't actually want to put in the standard
N * namespace ever. These are all called by the C99 macros. As they're
N * not specified by any standard they can't belong in ::std::. The
N * macro #defines are below amongst the standard function declarations.
N * We only include these if we actually need them later on
N */
N#if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
X#if !0L || 1L
N# ifdef __cplusplus
S extern "C" {
N# endif /* __cplusplus */
N
Nextern _SOFTFP unsigned __ARM_dcmp4(double /*x*/, double /*y*/);
Xextern __attribute__((__pcs__("aapcs"))) unsigned __ARM_dcmp4(double , double );
Nextern _SOFTFP unsigned __ARM_fcmp4(float /*x*/, float /*y*/);
Xextern __attribute__((__pcs__("aapcs"))) unsigned __ARM_fcmp4(float , float );
N /*
N * Compare x and y and return the CPSR in r0. These means we can test for
N * result types with bit pattern matching.
N *
N * These are a copy of the declarations in rt_fp.h keep in sync.
N */
N
Nextern _ARMABI_SOFTFP int __ARM_fpclassifyf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_fpclassifyf(float );
Nextern _ARMABI_SOFTFP int __ARM_fpclassify(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_fpclassify(double );
N /* Classify x into NaN, infinite, normal, subnormal, zero */
N /* Used by fpclassify macro */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isfinitef(float __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isfinitef(float __x)
N{
N return ((__FLT(__x) >> 23) & 0xff) != 0xff;
X return (((*(unsigned *)&(__x)) >> 23) & 0xff) != 0xff;
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isfinite(double __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isfinite(double __x)
N{
N return ((__HI(__x) >> 20) & 0x7ff) != 0x7ff;
X return (((*(1 + (unsigned *)&(__x))) >> 20) & 0x7ff) != 0x7ff;
N}
N /* Return 1 if __x is finite, 0 otherwise */
N /* Used by isfinite macro */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isinff(float __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isinff(float __x)
N{
N return (__FLT(__x) << 1) == 0xff000000;
X return ((*(unsigned *)&(__x)) << 1) == 0xff000000;
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isinf(double __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isinf(double __x)
N{
N return ((__HI(__x) << 1) == 0xffe00000) && (__LO(__x) == 0);
X return (((*(1 + (unsigned *)&(__x))) << 1) == 0xffe00000) && ((*(unsigned *)&(__x)) == 0);
N}
N /* Return 1 if __x is infinite, 0 otherwise */
N /* Used by isinf macro */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_islessgreaterf(float __x, float __y)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_islessgreaterf(float __x, float __y)
N{
N unsigned __f = __ARM_fcmp4(__x, __y) >> 28;
N return (__f == 8) || (__f == 2); /* Just N set or Just Z set */
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_islessgreater(double __x, double __y)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_islessgreater(double __x, double __y)
N{
N unsigned __f = __ARM_dcmp4(__x, __y) >> 28;
N return (__f == 8) || (__f == 2); /* Just N set or Just Z set */
N}
N /*
N * Compare __x and __y and return 1 if __x < __y or __x > __y, 0 otherwise
N * Used by islessgreater macro
N */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isnanf(float __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isnanf(float __x)
N{
N return (0x7f800000 - (__FLT(__x) & 0x7fffffff)) >> 31;
X return (0x7f800000 - ((*(unsigned *)&(__x)) & 0x7fffffff)) >> 31;
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isnan(double __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isnan(double __x)
N{
N unsigned __xf = __HI(__x) | ((__LO(__x) == 0) ? 0 : 1);
X unsigned __xf = (*(1 + (unsigned *)&(__x))) | (((*(unsigned *)&(__x)) == 0) ? 0 : 1);
N return (0x7ff00000 - (__xf & 0x7fffffff)) >> 31;
N}
N /* Return 1 if __x is a NaN, 0 otherwise */
N /* Used by isnan macro */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isnormalf(float __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isnormalf(float __x)
N{
N unsigned __xe = (__FLT(__x) >> 23) & 0xff;
X unsigned __xe = ((*(unsigned *)&(__x)) >> 23) & 0xff;
N return (__xe != 0xff) && (__xe != 0);
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isnormal(double __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isnormal(double __x)
N{
N unsigned __xe = (__HI(__x) >> 20) & 0x7ff;
X unsigned __xe = ((*(1 + (unsigned *)&(__x))) >> 20) & 0x7ff;
N return (__xe != 0x7ff) && (__xe != 0);
N}
N /* Return 1 if __x is a normalised number, 0 otherwise */
N /* used by isnormal macro */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_signbitf(float __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_signbitf(float __x)
N{
N return __FLT(__x) >> 31;
X return (*(unsigned *)&(__x)) >> 31;
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_signbit(double __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_signbit(double __x)
N{
N return __HI(__x) >> 31;
X return (*(1 + (unsigned *)&(__x))) >> 31;
N}
N /* Return signbit of __x */
N /* Used by signbit macro */
N
N# ifdef __cplusplus
S } /* extern "C" */
N# endif /* __cplusplus */
N#endif /* Strict ANSI */
N
N# undef __CLIBNS
N
N# ifdef __cplusplus
S namespace std {
S# define __CLIBNS ::std::
S extern "C" {
N# else
N# define __CLIBNS
N# endif /* __cplusplus */
N
N
N#ifndef __has_builtin
N #define __has_builtin(x) 0
N#endif
N
N#if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
X#if !0L || 1L
N /* C99 additions */
N typedef float float_t;
N typedef double double_t;
N#if __has_builtin(__builtin_inf)
X#if 0
S# define HUGE_VALF __builtin_inff()
S# define HUGE_VALL __builtin_infl()
S# define INFINITY __builtin_inff()
S# define NAN __builtin_nanf("")
N# else
N# define HUGE_VALF ((float)__INFINITY__)
N# define HUGE_VALL ((long double)__INFINITY__)
N# define INFINITY ((float)__INFINITY__)
N# define NAN (__ESCAPE__(0f_7FC00000))
N#endif
N
N# define MATH_ERRNO 1
N# define MATH_ERREXCEPT 2
Nextern const int math_errhandling;
N#endif
N#if __has_builtin(__builtin_inf)
X#if 0
S# define HUGE_VAL __builtin_inf()
N#else
N# define HUGE_VAL ((double)__INFINITY__)
N#endif
N
Nextern _ARMABI double acos(double /*x*/);
Xextern __declspec(__nothrow) double acos(double );
N /* computes the principal value of the arc cosine of x */
N /* a domain error occurs for arguments not in the range -1 to 1 */
N /* Returns: the arc cosine in the range 0 to Pi. */
Nextern _ARMABI double asin(double /*x*/);
Xextern __declspec(__nothrow) double asin(double );
N /* computes the principal value of the arc sine of x */
N /* a domain error occurs for arguments not in the range -1 to 1 */
N /* and -HUGE_VAL is returned. */
N /* Returns: the arc sine in the range -Pi/2 to Pi/2. */
N
Nextern _ARMABI_PURE double atan(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double atan(double );
N /* computes the principal value of the arc tangent of x */
N /* Returns: the arc tangent in the range -Pi/2 to Pi/2. */
N
Nextern _ARMABI double atan2(double /*y*/, double /*x*/);
Xextern __declspec(__nothrow) double atan2(double , double );
N /* computes the principal value of the arc tangent of y/x, using the */
N /* signs of both arguments to determine the quadrant of the return value */
N /* a domain error occurs if both args are zero, and -HUGE_VAL returned. */
N /* Returns: the arc tangent of y/x, in the range -Pi to Pi. */
N
Nextern _ARMABI double cos(double /*x*/);
Xextern __declspec(__nothrow) double cos(double );
N /* computes the cosine of x (measured in radians). A large magnitude */
N /* argument may yield a result with little or no significance. */
N /* a domain error occurs for infinite input (C 7.12.1 footnote 196). */
N /* Returns: the cosine value. */
Nextern _ARMABI double sin(double /*x*/);
Xextern __declspec(__nothrow) double sin(double );
N /* computes the sine of x (measured in radians). A large magnitude */
N /* argument may yield a result with little or no significance. */
N /* a domain error occurs for infinite input (C 7.12.1 footnote 196). */
N /* Returns: the sine value. */
N
Nextern void __use_accurate_range_reduction(void);
N /* reference this to select the larger, slower, but more accurate */
N /* range reduction in sin, cos and tan */
N
Nextern _ARMABI double tan(double /*x*/);
Xextern __declspec(__nothrow) double tan(double );
N /* computes the tangent of x (measured in radians). A large magnitude */
N /* argument may yield a result with little or no significance */
N /* Returns: the tangent value. */
N /* if range error; returns HUGE_VAL. */
N
Nextern _ARMABI double cosh(double /*x*/);
Xextern __declspec(__nothrow) double cosh(double );
N /* computes the hyperbolic cosine of x. A range error occurs if the */
N /* magnitude of x is too large. */
N /* Returns: the hyperbolic cosine value. */
N /* if range error; returns HUGE_VAL. */
Nextern _ARMABI double sinh(double /*x*/);
Xextern __declspec(__nothrow) double sinh(double );
N /* computes the hyperbolic sine of x. A range error occurs if the */
N /* magnitude of x is too large. */
N /* Returns: the hyperbolic sine value. */
N /* if range error; returns -HUGE_VAL or HUGE_VAL depending */
N /* on the sign of the argument */
N
Nextern _ARMABI_PURE double tanh(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double tanh(double );
N /* computes the hyperbolic tangent of x. */
N /* Returns: the hyperbolic tangent value. */
N
Nextern _ARMABI double exp(double /*x*/);
Xextern __declspec(__nothrow) double exp(double );
N /* computes the exponential function of x. A range error occurs if the */
N /* magnitude of x is too large. */
N /* Returns: the exponential value. */
N /* if underflow range error; 0 is returned. */
N /* if overflow range error; HUGE_VAL is returned. */
N
Nextern _ARMABI double frexp(double /*value*/, int * /*exp*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) double frexp(double , int * ) __attribute__((__nonnull__(2)));
N /* breaks a floating-point number into a normalised fraction and an */
N /* integral power of 2. It stores the integer in the int object pointed */
N /* to by exp. */
N /* Returns: the value x, such that x is a double with magnitude in the */
N /* interval 0.5 to 1.0 or zero, and value equals x times 2 raised to the */
N /* power *exp. If value is zero, both parts of the result are zero. */
N
Nextern _ARMABI double ldexp(double /*x*/, int /*exp*/);
Xextern __declspec(__nothrow) double ldexp(double , int );
N /* multiplies a floating-point number by an integral power of 2. */
N /* A range error may occur. */
N /* Returns: the value of x times 2 raised to the power of exp. */
N /* if range error; HUGE_VAL is returned. */
Nextern _ARMABI double log(double /*x*/);
Xextern __declspec(__nothrow) double log(double );
N /* computes the natural logarithm of x. A domain error occurs if the */
N /* argument is negative, and -HUGE_VAL is returned. A range error occurs */
N /* if the argument is zero. */
N /* Returns: the natural logarithm. */
N /* if range error; -HUGE_VAL is returned. */
Nextern _ARMABI double log10(double /*x*/);
Xextern __declspec(__nothrow) double log10(double );
N /* computes the base-ten logarithm of x. A domain error occurs if the */
N /* argument is negative. A range error occurs if the argument is zero. */
N /* Returns: the base-ten logarithm. */
Nextern _ARMABI double modf(double /*value*/, double * /*iptr*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) double modf(double , double * ) __attribute__((__nonnull__(2)));
N /* breaks the argument value into integral and fraction parts, each of */
N /* which has the same sign as the argument. It stores the integral part */
N /* as a double in the object pointed to by iptr. */
N /* Returns: the signed fractional part of value. */
N
Nextern _ARMABI double pow(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double pow(double , double );
N /* computes x raised to the power of y. A domain error occurs if x is */
N /* zero and y is less than or equal to zero, or if x is negative and y */
N /* is not an integer, and -HUGE_VAL returned. A range error may occur. */
N /* Returns: the value of x raised to the power of y. */
N /* if underflow range error; 0 is returned. */
N /* if overflow range error; HUGE_VAL is returned. */
Nextern _ARMABI double sqrt(double /*x*/);
Xextern __declspec(__nothrow) double sqrt(double );
N /* computes the non-negative square root of x. A domain error occurs */
N /* if the argument is negative, and -HUGE_VAL returned. */
N /* Returns: the value of the square root. */
N
N#if defined(__TARGET_FPU_VFP_DOUBLE) && !defined(__TARGET_FPU_SOFTVFP)
X#if 0L && !1L
S _ARMABI_INLINE double _sqrt(double __x) { return __sqrt(__x); }
N#else
N _ARMABI_INLINE double _sqrt(double __x) { return sqrt(__x); }
X static __inline double _sqrt(double __x) { return sqrt(__x); }
N#endif
N#if defined(__TARGET_FPU_VFP_SINGLE) && !defined(__TARGET_FPU_SOFTVFP)
X#if 0L && !1L
S _ARMABI_INLINE float _sqrtf(float __x) { return __sqrtf(__x); }
N#else
N _ARMABI_INLINE float _sqrtf(float __x) { return (float)sqrt(__x); }
X static __inline float _sqrtf(float __x) { return (float)sqrt(__x); }
N#endif
N /* With VFP, _sqrt and _sqrtf should expand inline as the native VFP square root
N * instructions. They will not behave like the C sqrt() function, because
N * they will report unusual values as IEEE exceptions (in fpmodes which
N * support IEEE exceptions) rather than in errno. These function names
N * are not specified in any standard. */
N
Nextern _ARMABI_PURE double ceil(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double ceil(double );
N /* computes the smallest integer not less than x. */
N /* Returns: the smallest integer not less than x, expressed as a double. */
Nextern _ARMABI_PURE double fabs(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double fabs(double );
N /* computes the absolute value of the floating-point number x. */
N /* Returns: the absolute value of x. */
N
Nextern _ARMABI_PURE double floor(double /*d*/);
Xextern __declspec(__nothrow) __attribute__((const)) double floor(double );
N /* computes the largest integer not greater than x. */
N /* Returns: the largest integer not greater than x, expressed as a double */
N
Nextern _ARMABI double fmod(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double fmod(double , double );
N /* computes the floating-point remainder of x/y. */
N /* Returns: the value x - i * y, for some integer i such that, if y is */
N /* nonzero, the result has the same sign as x and magnitude */
N /* less than the magnitude of y. If y is zero, a domain error */
N /* occurs and -HUGE_VAL is returned. */
N
N /* Additional Mathlib functions not defined by the ANSI standard.
N * Not guaranteed, and not necessarily very well tested.
N * C99 requires the user to include <math.h> to use these functions
N * declaring them "by hand" is not sufficient
N *
N * The above statement is not completely true now. Some of the above
N * C99 functionality has been added as per the Standard, and (where
N * necessary) old Mathlib functionality withdrawn/changed. Before
N * including this header #define __ENABLE_MATHLIB_LEGACY if you want to
N * re-enable the legacy functionality.
N */
N
N#if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
X#if !0L || 1L
N
Nextern _ARMABI double acosh(double /*x*/);
Xextern __declspec(__nothrow) double acosh(double );
N /*
N * Inverse cosh. EDOM if argument < 1.0
N */
Nextern _ARMABI double asinh(double /*x*/);
Xextern __declspec(__nothrow) double asinh(double );
N /*
N * Inverse sinh.
N */
Nextern _ARMABI double atanh(double /*x*/);
Xextern __declspec(__nothrow) double atanh(double );
N /*
N * Inverse tanh. EDOM if |argument| > 1.0
N */
Nextern _ARMABI double cbrt(double /*x*/);
Xextern __declspec(__nothrow) double cbrt(double );
N /*
N * Cube root.
N */
N_ARMABI_INLINE _ARMABI_PURE double copysign(double __x, double __y)
Xstatic __inline __declspec(__nothrow) __attribute__((const)) double copysign(double __x, double __y)
N /*
N * Returns x with sign bit replaced by sign of y.
N */
N{
N __HI(__x) = (__HI(__x) & 0x7fffffff) | (__HI(__y) & 0x80000000);
X (*(1 + (unsigned *)&(__x))) = ((*(1 + (unsigned *)&(__x))) & 0x7fffffff) | ((*(1 + (unsigned *)&(__y))) & 0x80000000);
N return __x;
N}
N_ARMABI_INLINE _ARMABI_PURE float copysignf(float __x, float __y)
Xstatic __inline __declspec(__nothrow) __attribute__((const)) float copysignf(float __x, float __y)
N /*
N * Returns x with sign bit replaced by sign of y.
N */
N{
N __FLT(__x) = (__FLT(__x) & 0x7fffffff) | (__FLT(__y) & 0x80000000);
X (*(unsigned *)&(__x)) = ((*(unsigned *)&(__x)) & 0x7fffffff) | ((*(unsigned *)&(__y)) & 0x80000000);
N return __x;
N}
Nextern _ARMABI double erf(double /*x*/);
Xextern __declspec(__nothrow) double erf(double );
N /*
N * Error function. (2/sqrt(pi)) * integral from 0 to x of exp(-t*t) dt.
N */
Nextern _ARMABI double erfc(double /*x*/);
Xextern __declspec(__nothrow) double erfc(double );
N /*
N * 1-erf(x). (More accurate than just coding 1-erf(x), for large x.)
N */
Nextern _ARMABI double expm1(double /*x*/);
Xextern __declspec(__nothrow) double expm1(double );
N /*
N * exp(x)-1. (More accurate than just coding exp(x)-1, for small x.)
N */
N#define fpclassify(x) \
N ((sizeof(x) == sizeof(float)) ? \
N __ARM_fpclassifyf(x) : __ARM_fpclassify(x))
X#define fpclassify(x) ((sizeof(x) == sizeof(float)) ? __ARM_fpclassifyf(x) : __ARM_fpclassify(x))
N /*
N * Classify a floating point number into one of the following values:
N */
N#define FP_ZERO (0)
N#define FP_SUBNORMAL (4)
N#define FP_NORMAL (5)
N#define FP_INFINITE (3)
N#define FP_NAN (7)
N
N#if defined(_WANT_SNAN) && defined(__SUPPORT_SNAN__)
X#if 0L && 0L
S/*
S * Note that we'll never classify a number as FP_NAN, as all NaNs will
S * be either FP_NANQ or FP_NANS
S */
S# define FP_NANQ (8)
S# define FP_NANS (9)
N#endif
N
N
Nextern _ARMABI double hypot(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double hypot(double , double );
N /*
N * sqrt(x*x+y*y), ie the length of the vector (x,y) or the
N * hypotenuse of a right triangle whose other two sides are x
N * and y. Won't overflow unless the _answer_ is too big, even
N * if the intermediate x*x+y*y is too big.
N */
Nextern _ARMABI int ilogb(double /*x*/);
Xextern __declspec(__nothrow) int ilogb(double );
N /*
N * Exponent of x (returns 0 for 1.0, 1 for 2.0, -1 for 0.5, etc.)
N */
Nextern _ARMABI int ilogbf(float /*x*/);
Xextern __declspec(__nothrow) int ilogbf(float );
N /*
N * Like ilogb but takes a float
N */
Nextern _ARMABI int ilogbl(long double /*x*/);
Xextern __declspec(__nothrow) int ilogbl(long double );
N /*
N * Exponent of x (returns 0 for 1.0, 1 for 2.0, -1 for 0.5, etc.)
N */
N#define FP_ILOGB0 (-0x7fffffff) /* ilogb(0) == -INT_MAX */
N#define FP_ILOGBNAN ( 0x80000000) /* ilogb(NAN) == INT_MIN */
N
N#define isfinite(x) \
N ((sizeof(x) == sizeof(float)) \
N ? __ARM_isfinitef(x) \
N : __ARM_isfinite(x))
X#define isfinite(x) ((sizeof(x) == sizeof(float)) ? __ARM_isfinitef(x) : __ARM_isfinite(x))
N /*
N * Returns true if x is a finite number, size independent.
N */
N
N#define isgreater(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? ((__ARM_fcmp4((x), (y)) & 0xf0000000) == 0x20000000) \
N : ((__ARM_dcmp4((x), (y)) & 0xf0000000) == 0x20000000))
X#define isgreater(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? ((__ARM_fcmp4((x), (y)) & 0xf0000000) == 0x20000000) : ((__ARM_dcmp4((x), (y)) & 0xf0000000) == 0x20000000))
N /*
N * Returns true if x > y, throws no exceptions except on Signaling NaNs
N *
N * We want the C not set but the Z bit clear, V must be clear
N */
N
N#define isgreaterequal(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? ((__ARM_fcmp4((x), (y)) & 0x30000000) == 0x20000000) \
N : ((__ARM_dcmp4((x), (y)) & 0x30000000) == 0x20000000))
X#define isgreaterequal(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? ((__ARM_fcmp4((x), (y)) & 0x30000000) == 0x20000000) : ((__ARM_dcmp4((x), (y)) & 0x30000000) == 0x20000000))
N /*
N * Returns true if x >= y, throws no exceptions except on Signaling NaNs
N *
N * We just need to see if the C bit is set or not and ensure V clear
N */
N
N#define isinf(x) \
N ((sizeof(x) == sizeof(float)) \
N ? __ARM_isinff(x) \
N : __ARM_isinf(x))
X#define isinf(x) ((sizeof(x) == sizeof(float)) ? __ARM_isinff(x) : __ARM_isinf(x))
N /*
N * Returns true if x is an infinity, size independent.
N */
N
N#define isless(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? ((__ARM_fcmp4((x), (y)) & 0xf0000000) == 0x80000000) \
N : ((__ARM_dcmp4((x), (y)) & 0xf0000000) == 0x80000000))
X#define isless(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? ((__ARM_fcmp4((x), (y)) & 0xf0000000) == 0x80000000) : ((__ARM_dcmp4((x), (y)) & 0xf0000000) == 0x80000000))
N /*
N * Returns true if x < y, throws no exceptions except on Signaling NaNs
N *
N * We're less than if N is set, V clear
N */
N
N#define islessequal(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? ((__ARM_fcmp4((x), (y)) & 0xc0000000) != 0) \
N : ((__ARM_dcmp4((x), (y)) & 0xc0000000) != 0))
X#define islessequal(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? ((__ARM_fcmp4((x), (y)) & 0xc0000000) != 0) : ((__ARM_dcmp4((x), (y)) & 0xc0000000) != 0))
N /*
N * Returns true if x <= y, throws no exceptions except on Signaling NaNs
N *
N * We're less than or equal if one of N or Z is set, V clear
N */
N
N#define islessgreater(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? __ARM_islessgreaterf((x), (y)) \
N : __ARM_islessgreater((x), (y)))
X#define islessgreater(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? __ARM_islessgreaterf((x), (y)) : __ARM_islessgreater((x), (y)))
N /*
N * Returns true if x <> y, throws no exceptions except on Signaling NaNs
N * Unfortunately this test is too complicated to do in a macro without
N * evaluating x & y twice. Shame really...
N */
N
N#define isnan(x) \
N ((sizeof(x) == sizeof(float)) \
N ? __ARM_isnanf(x) \
N : __ARM_isnan(x))
X#define isnan(x) ((sizeof(x) == sizeof(float)) ? __ARM_isnanf(x) : __ARM_isnan(x))
N /*
N * Returns TRUE if x is a NaN.
N */
N
N#define isnormal(x) \
N ((sizeof(x) == sizeof(float)) \
N ? __ARM_isnormalf(x) \
N : __ARM_isnormal(x))
X#define isnormal(x) ((sizeof(x) == sizeof(float)) ? __ARM_isnormalf(x) : __ARM_isnormal(x))
N /*
N * Returns TRUE if x is a NaN.
N */
N
N#define isunordered(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? ((__ARM_fcmp4((x), (y)) & 0x10000000) == 0x10000000) \
N : ((__ARM_dcmp4((x), (y)) & 0x10000000) == 0x10000000))
X#define isunordered(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? ((__ARM_fcmp4((x), (y)) & 0x10000000) == 0x10000000) : ((__ARM_dcmp4((x), (y)) & 0x10000000) == 0x10000000))
N /*
N * Returns true if x ? y, throws no exceptions except on Signaling NaNs
N * Unordered occurs if and only if the V bit is set
N */
N
Nextern _ARMABI double lgamma (double /*x*/);
Xextern __declspec(__nothrow) double lgamma (double );
N /*
N * The log of the absolute value of the gamma function of x. The sign
N * of the gamma function of x is returned in the global `signgam'.
N */
Nextern _ARMABI double log1p(double /*x*/);
Xextern __declspec(__nothrow) double log1p(double );
N /*
N * log(1+x). (More accurate than just coding log(1+x), for small x.)
N */
Nextern _ARMABI double logb(double /*x*/);
Xextern __declspec(__nothrow) double logb(double );
N /*
N * Like ilogb but returns a double.
N */
Nextern _ARMABI float logbf(float /*x*/);
Xextern __declspec(__nothrow) float logbf(float );
N /*
N * Like logb but takes and returns float
N */
Nextern _ARMABI long double logbl(long double /*x*/);
Xextern __declspec(__nothrow) long double logbl(long double );
N /*
N * Like logb but takes and returns long double
N */
Nextern _ARMABI double nextafter(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double nextafter(double , double );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI float nextafterf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float nextafterf(float , float );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI long double nextafterl(long double /*x*/, long double /*y*/);
Xextern __declspec(__nothrow) long double nextafterl(long double , long double );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI double nexttoward(double /*x*/, long double /*y*/);
Xextern __declspec(__nothrow) double nexttoward(double , long double );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI float nexttowardf(float /*x*/, long double /*y*/);
Xextern __declspec(__nothrow) float nexttowardf(float , long double );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI long double nexttowardl(long double /*x*/, long double /*y*/);
Xextern __declspec(__nothrow) long double nexttowardl(long double , long double );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI double remainder(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double remainder(double , double );
N /*
N * Returns the remainder of x by y, in the IEEE 754 sense.
N */
Nextern _ARMABI_FPEXCEPT double rint(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double rint(double );
N /*
N * Rounds x to an integer, in the IEEE 754 sense.
N */
Nextern _ARMABI double scalbln(double /*x*/, long int /*n*/);
Xextern __declspec(__nothrow) double scalbln(double , long int );
N /*
N * Compute x times 2^n quickly.
N */
Nextern _ARMABI float scalblnf(float /*x*/, long int /*n*/);
Xextern __declspec(__nothrow) float scalblnf(float , long int );
N /*
N * Compute x times 2^n quickly.
N */
Nextern _ARMABI long double scalblnl(long double /*x*/, long int /*n*/);
Xextern __declspec(__nothrow) long double scalblnl(long double , long int );
N /*
N * Compute x times 2^n quickly.
N */
Nextern _ARMABI double scalbn(double /*x*/, int /*n*/);
Xextern __declspec(__nothrow) double scalbn(double , int );
N /*
N * Compute x times 2^n quickly.
N */
Nextern _ARMABI float scalbnf(float /*x*/, int /*n*/);
Xextern __declspec(__nothrow) float scalbnf(float , int );
N /*
N * Compute x times 2^n quickly.
N */
Nextern _ARMABI long double scalbnl(long double /*x*/, int /*n*/);
Xextern __declspec(__nothrow) long double scalbnl(long double , int );
N /*
N * Compute x times 2^n quickly.
N */
N#define signbit(x) \
N ((sizeof(x) == sizeof(float)) \
N ? __ARM_signbitf(x) \
N : __ARM_signbit(x))
X#define signbit(x) ((sizeof(x) == sizeof(float)) ? __ARM_signbitf(x) : __ARM_signbit(x))
N /*
N * Returns the signbit of x, size independent macro
N */
N#endif
N
N/* C99 float versions of functions. math.h has always reserved these
N identifiers for this purpose (7.13.4). */
Nextern _ARMABI_PURE float _fabsf(float); /* old ARM name */
Xextern __declspec(__nothrow) __attribute__((const)) float _fabsf(float);
N_ARMABI_INLINE _ARMABI_PURE float fabsf(float __f) { return _fabsf(__f); }
Xstatic __inline __declspec(__nothrow) __attribute__((const)) float fabsf(float __f) { return _fabsf(__f); }
Nextern _ARMABI float sinf(float /*x*/);
Xextern __declspec(__nothrow) float sinf(float );
Nextern _ARMABI float cosf(float /*x*/);
Xextern __declspec(__nothrow) float cosf(float );
Nextern _ARMABI float tanf(float /*x*/);
Xextern __declspec(__nothrow) float tanf(float );
Nextern _ARMABI float acosf(float /*x*/);
Xextern __declspec(__nothrow) float acosf(float );
Nextern _ARMABI float asinf(float /*x*/);
Xextern __declspec(__nothrow) float asinf(float );
Nextern _ARMABI float atanf(float /*x*/);
Xextern __declspec(__nothrow) float atanf(float );
Nextern _ARMABI float atan2f(float /*y*/, float /*x*/);
Xextern __declspec(__nothrow) float atan2f(float , float );
Nextern _ARMABI float sinhf(float /*x*/);
Xextern __declspec(__nothrow) float sinhf(float );
Nextern _ARMABI float coshf(float /*x*/);
Xextern __declspec(__nothrow) float coshf(float );
Nextern _ARMABI float tanhf(float /*x*/);
Xextern __declspec(__nothrow) float tanhf(float );
Nextern _ARMABI float expf(float /*x*/);
Xextern __declspec(__nothrow) float expf(float );
Nextern _ARMABI float logf(float /*x*/);
Xextern __declspec(__nothrow) float logf(float );
Nextern _ARMABI float log10f(float /*x*/);
Xextern __declspec(__nothrow) float log10f(float );
Nextern _ARMABI float powf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float powf(float , float );
Nextern _ARMABI float sqrtf(float /*x*/);
Xextern __declspec(__nothrow) float sqrtf(float );
Nextern _ARMABI float ldexpf(float /*x*/, int /*exp*/);
Xextern __declspec(__nothrow) float ldexpf(float , int );
Nextern _ARMABI float frexpf(float /*value*/, int * /*exp*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) float frexpf(float , int * ) __attribute__((__nonnull__(2)));
Nextern _ARMABI_PURE float ceilf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) float ceilf(float );
Nextern _ARMABI_PURE float floorf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) float floorf(float );
Nextern _ARMABI float fmodf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float fmodf(float , float );
Nextern _ARMABI float modff(float /*value*/, float * /*iptr*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) float modff(float , float * ) __attribute__((__nonnull__(2)));
N
N/* C99 long double versions of functions. */
N/* (also need to have 'using' declarations below) */
N#define _ARMDEFLD1(f) \
N _ARMABI long double f##l(long double /*x*/)
X#define _ARMDEFLD1(f) _ARMABI long double f##l(long double )
N
N#define _ARMDEFLD1P(f, T) \
N _ARMABI long double f##l(long double /*x*/, T /*p*/)
X#define _ARMDEFLD1P(f, T) _ARMABI long double f##l(long double , T )
N
N#define _ARMDEFLD2(f) \
N _ARMABI long double f##l(long double /*x*/, long double /*y*/)
X#define _ARMDEFLD2(f) _ARMABI long double f##l(long double , long double )
N
N/*
N * Long double versions of C89 functions can be defined
N * unconditionally, because C89 reserved these names in "future
N * library directions".
N */
N_ARMDEFLD1(acos);
X__declspec(__nothrow) long double acosl(long double );
N_ARMDEFLD1(asin);
X__declspec(__nothrow) long double asinl(long double );
N_ARMDEFLD1(atan);
X__declspec(__nothrow) long double atanl(long double );
N_ARMDEFLD2(atan2);
X__declspec(__nothrow) long double atan2l(long double , long double );
N_ARMDEFLD1(ceil);
X__declspec(__nothrow) long double ceill(long double );
N_ARMDEFLD1(cos);
X__declspec(__nothrow) long double cosl(long double );
N_ARMDEFLD1(cosh);
X__declspec(__nothrow) long double coshl(long double );
N_ARMDEFLD1(exp);
X__declspec(__nothrow) long double expl(long double );
N_ARMDEFLD1(fabs);
X__declspec(__nothrow) long double fabsl(long double );
N_ARMDEFLD1(floor);
X__declspec(__nothrow) long double floorl(long double );
N_ARMDEFLD2(fmod);
X__declspec(__nothrow) long double fmodl(long double , long double );
N_ARMDEFLD1P(frexp, int*) __attribute__((__nonnull__(2)));
X__declspec(__nothrow) long double frexpl(long double , int* ) __attribute__((__nonnull__(2)));
N_ARMDEFLD1P(ldexp, int);
X__declspec(__nothrow) long double ldexpl(long double , int );
N_ARMDEFLD1(log);
X__declspec(__nothrow) long double logl(long double );
N_ARMDEFLD1(log10);
X__declspec(__nothrow) long double log10l(long double );
N_ARMABI long double modfl(long double /*x*/, long double * /*p*/) __attribute__((__nonnull__(2)));
X__declspec(__nothrow) long double modfl(long double , long double * ) __attribute__((__nonnull__(2)));
N_ARMDEFLD2(pow);
X__declspec(__nothrow) long double powl(long double , long double );
N_ARMDEFLD1(sin);
X__declspec(__nothrow) long double sinl(long double );
N_ARMDEFLD1(sinh);
X__declspec(__nothrow) long double sinhl(long double );
N_ARMDEFLD1(sqrt);
X__declspec(__nothrow) long double sqrtl(long double );
N_ARMDEFLD1(tan);
X__declspec(__nothrow) long double tanl(long double );
N_ARMDEFLD1(tanh);
X__declspec(__nothrow) long double tanhl(long double );
N
N#if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
X#if !0L || 1L
N
N/*
N * C99 float and long double versions of extra-C89 functions.
N */
Nextern _ARMABI float acoshf(float /*x*/);
Xextern __declspec(__nothrow) float acoshf(float );
N_ARMDEFLD1(acosh);
X__declspec(__nothrow) long double acoshl(long double );
Nextern _ARMABI float asinhf(float /*x*/);
Xextern __declspec(__nothrow) float asinhf(float );
N_ARMDEFLD1(asinh);
X__declspec(__nothrow) long double asinhl(long double );
Nextern _ARMABI float atanhf(float /*x*/);
Xextern __declspec(__nothrow) float atanhf(float );
N_ARMDEFLD1(atanh);
X__declspec(__nothrow) long double atanhl(long double );
N_ARMDEFLD2(copysign);
X__declspec(__nothrow) long double copysignl(long double , long double );
Nextern _ARMABI float cbrtf(float /*x*/);
Xextern __declspec(__nothrow) float cbrtf(float );
N_ARMDEFLD1(cbrt);
X__declspec(__nothrow) long double cbrtl(long double );
Nextern _ARMABI float erff(float /*x*/);
Xextern __declspec(__nothrow) float erff(float );
N_ARMDEFLD1(erf);
X__declspec(__nothrow) long double erfl(long double );
Nextern _ARMABI float erfcf(float /*x*/);
Xextern __declspec(__nothrow) float erfcf(float );
N_ARMDEFLD1(erfc);
X__declspec(__nothrow) long double erfcl(long double );
Nextern _ARMABI float expm1f(float /*x*/);
Xextern __declspec(__nothrow) float expm1f(float );
N_ARMDEFLD1(expm1);
X__declspec(__nothrow) long double expm1l(long double );
Nextern _ARMABI float log1pf(float /*x*/);
Xextern __declspec(__nothrow) float log1pf(float );
N_ARMDEFLD1(log1p);
X__declspec(__nothrow) long double log1pl(long double );
Nextern _ARMABI float hypotf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float hypotf(float , float );
N_ARMDEFLD2(hypot);
X__declspec(__nothrow) long double hypotl(long double , long double );
Nextern _ARMABI float lgammaf(float /*x*/);
Xextern __declspec(__nothrow) float lgammaf(float );
N_ARMDEFLD1(lgamma);
X__declspec(__nothrow) long double lgammal(long double );
Nextern _ARMABI float remainderf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float remainderf(float , float );
N_ARMDEFLD2(remainder);
X__declspec(__nothrow) long double remainderl(long double , long double );
Nextern _ARMABI float rintf(float /*x*/);
Xextern __declspec(__nothrow) float rintf(float );
N_ARMDEFLD1(rint);
X__declspec(__nothrow) long double rintl(long double );
N
N#endif
N
N#if (defined(__clang__) && !defined(__STRICT_ANSI)) || defined(__USE_C99_MATH)
X#if (0L && !0L) || 1L
N/*
N * Functions new in C99.
N */
Nextern _ARMABI double exp2(double /*x*/); /* * 2.^x. */
Xextern __declspec(__nothrow) double exp2(double );
Nextern _ARMABI float exp2f(float /*x*/);
Xextern __declspec(__nothrow) float exp2f(float );
N_ARMDEFLD1(exp2);
X__declspec(__nothrow) long double exp2l(long double );
Nextern _ARMABI double fdim(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double fdim(double , double );
Nextern _ARMABI float fdimf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float fdimf(float , float );
N_ARMDEFLD2(fdim);
X__declspec(__nothrow) long double fdiml(long double , long double );
N#ifdef __FP_FAST_FMA
S#define FP_FAST_FMA
N#endif
N#ifdef __FP_FAST_FMAF
S#define FP_FAST_FMAF
N#endif
N#ifdef __FP_FAST_FMAL
S#define FP_FAST_FMAL
N#endif
Nextern _ARMABI double fma(double /*x*/, double /*y*/, double /*z*/);
Xextern __declspec(__nothrow) double fma(double , double , double );
Nextern _ARMABI float fmaf(float /*x*/, float /*y*/, float /*z*/);
Xextern __declspec(__nothrow) float fmaf(float , float , float );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI long double fmal(long double __x, long double __y, long double __z) \
N { return (long double)fma((double)__x, (double)__y, (double)__z); }
Xstatic __inline __declspec(__nothrow) long double fmal(long double __x, long double __y, long double __z) { return (long double)fma((double)__x, (double)__y, (double)__z); }
N#endif
Nextern _ARMABI_FPEXCEPT double fmax(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) __attribute__((const)) double fmax(double , double );
Nextern _ARMABI_FPEXCEPT float fmaxf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) __attribute__((const)) float fmaxf(float , float );
N_ARMDEFLD2(fmax);
X__declspec(__nothrow) long double fmaxl(long double , long double );
Nextern _ARMABI_FPEXCEPT double fmin(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) __attribute__((const)) double fmin(double , double );
Nextern _ARMABI_FPEXCEPT float fminf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) __attribute__((const)) float fminf(float , float );
N_ARMDEFLD2(fmin);
X__declspec(__nothrow) long double fminl(long double , long double );
Nextern _ARMABI double log2(double /*x*/); /* * log base 2 of x. */
Xextern __declspec(__nothrow) double log2(double );
Nextern _ARMABI float log2f(float /*x*/);
Xextern __declspec(__nothrow) float log2f(float );
N_ARMDEFLD1(log2);
X__declspec(__nothrow) long double log2l(long double );
Nextern _ARMABI long lrint(double /*x*/);
Xextern __declspec(__nothrow) long lrint(double );
Nextern _ARMABI long lrintf(float /*x*/);
Xextern __declspec(__nothrow) long lrintf(float );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI long lrintl(long double __x) \
N { return lrint((double)__x); }
Xstatic __inline __declspec(__nothrow) long lrintl(long double __x) { return lrint((double)__x); }
N#endif
Nextern _ARMABI __LONGLONG llrint(double /*x*/);
Xextern __declspec(__nothrow) long long llrint(double );
Nextern _ARMABI __LONGLONG llrintf(float /*x*/);
Xextern __declspec(__nothrow) long long llrintf(float );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI __LONGLONG llrintl(long double __x) \
N { return llrint((double)__x); }
Xstatic __inline __declspec(__nothrow) long long llrintl(long double __x) { return llrint((double)__x); }
N#endif
Nextern _ARMABI long lround(double /*x*/);
Xextern __declspec(__nothrow) long lround(double );
Nextern _ARMABI long lroundf(float /*x*/);
Xextern __declspec(__nothrow) long lroundf(float );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI long lroundl(long double __x) \
N { return lround((double)__x); }
Xstatic __inline __declspec(__nothrow) long lroundl(long double __x) { return lround((double)__x); }
N#endif
Nextern _ARMABI __LONGLONG llround(double /*x*/);
Xextern __declspec(__nothrow) long long llround(double );
Nextern _ARMABI __LONGLONG llroundf(float /*x*/);
Xextern __declspec(__nothrow) long long llroundf(float );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI __LONGLONG llroundl(long double __x) \
N { return llround((double)__x); }
Xstatic __inline __declspec(__nothrow) long long llroundl(long double __x) { return llround((double)__x); }
N#endif
Nextern _ARMABI_PURE double nan(const char */*tagp*/);
Xextern __declspec(__nothrow) __attribute__((const)) double nan(const char * );
Nextern _ARMABI_PURE float nanf(const char */*tagp*/);
Xextern __declspec(__nothrow) __attribute__((const)) float nanf(const char * );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI_PURE long double nanl(const char *__t) \
N { return (long double)nan(__t); }
Xstatic __inline __declspec(__nothrow) __attribute__((const)) long double nanl(const char *__t) { return (long double)nan(__t); }
N#endif
N#if defined(_WANT_SNAN) && defined(__SUPPORT_SNAN__)
X#if 0L && 0L
Sextern _ARMABI_PURE double nans(const char */*tagp*/);
Sextern _ARMABI_PURE float nansf(const char */*tagp*/);
S#ifdef __HAVE_LONGDOUBLE
S_ARMABI_INLINE _ARMABI_FPEXCEPT long double nansl(const char *__t) \
S { return (long double)nans(__t); }
X_ARMABI_INLINE _ARMABI_FPEXCEPT long double nansl(const char *__t) { return (long double)nans(__t); }
S#endif
N#endif
Nextern _ARMABI_FPEXCEPT double nearbyint(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double nearbyint(double );
Nextern _ARMABI_FPEXCEPT float nearbyintf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) float nearbyintf(float );
N_ARMDEFLD1(nearbyint);
X__declspec(__nothrow) long double nearbyintl(long double );
Nextern double remquo(double /*x*/, double /*y*/, int */*quo*/);
Nextern float remquof(float /*x*/, float /*y*/, int */*quo*/);
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE long double remquol(long double __x, long double __y, int *__q) \
N { return (long double)remquo((double)__x, (double)__y, __q); }
Xstatic __inline long double remquol(long double __x, long double __y, int *__q) { return (long double)remquo((double)__x, (double)__y, __q); }
N#endif
Nextern _ARMABI_FPEXCEPT double round(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double round(double );
Nextern _ARMABI_FPEXCEPT float roundf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) float roundf(float );
N_ARMDEFLD1(round);
X__declspec(__nothrow) long double roundl(long double );
Nextern _ARMABI double tgamma(double /*x*/); /* * The gamma function of x. */
Xextern __declspec(__nothrow) double tgamma(double );
Nextern _ARMABI float tgammaf(float /*x*/);
Xextern __declspec(__nothrow) float tgammaf(float );
N_ARMDEFLD1(tgamma);
X__declspec(__nothrow) long double tgammal(long double );
Nextern _ARMABI_FPEXCEPT double trunc(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double trunc(double );
Nextern _ARMABI_FPEXCEPT float truncf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) float truncf(float );
N_ARMDEFLD1(trunc);
X__declspec(__nothrow) long double truncl(long double );
N#endif
N
N#undef _ARMDEFLD1
N#undef _ARMDEFLD1P
N#undef _ARMDEFLD2
N
N#if defined(__cplusplus) && ((!defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)) || defined(__ARMCOMPILER_LIBCXX))
X#if 0L && ((!0L || 1L) || 0L)
S extern "C++" {
S inline int (fpclassify)(double __x) { return fpclassify(__x); }
S inline bool (isfinite)(double __x) { return isfinite(__x); }
S inline bool (isgreater)(double __x, double __y) { return isgreater(__x, __y); }
S inline bool (isgreaterequal)(double __x, double __y) { return isgreaterequal(__x, __y); }
S inline bool (isinf)(double __x) { return isinf(__x); }
S inline bool (isless)(double __x, double __y) { return isless(__x, __y); }
S inline bool (islessequal)(double __x, double __y) { return islessequal(__x, __y); }
S inline bool (islessgreater)(double __x, double __y) { return islessgreater(__x, __y); }
S inline bool (isnan)(double __x) { return isnan(__x); }
S inline bool (isnormal)(double __x) { return isnormal(__x); }
S inline bool (isunordered)(double __x, double __y) { return isunordered(__x, __y); }
S
S }
N#endif
N
N#if defined(__cplusplus) && !defined(__ARMCOMPILER_LIBCXX)
X#if 0L && !0L
S extern "C++" {
S inline float abs(float __x) { return fabsf(__x); }
S inline float acos(float __x) { return acosf(__x); }
S inline float asin(float __x) { return asinf(__x); }
S inline float atan(float __x) { return atanf(__x); }
S inline float atan2(float __y, float __x) { return atan2f(__y,__x); }
S inline float ceil(float __x) { return ceilf(__x); }
S inline float cos(float __x) { return cosf(__x); }
S inline float cosh(float __x) { return coshf(__x); }
S inline float exp(float __x) { return expf(__x); }
S inline float fabs(float __x) { return fabsf(__x); }
S inline float floor(float __x) { return floorf(__x); }
S inline float fmod(float __x, float __y) { return fmodf(__x, __y); }
S float frexp(float __x, int* __exp) __attribute__((__nonnull__(2)));
S inline float frexp(float __x, int* __exp) { return frexpf(__x, __exp); }
S inline float ldexp(float __x, int __exp) { return ldexpf(__x, __exp);}
S inline float log(float __x) { return logf(__x); }
S inline float log10(float __x) { return log10f(__x); }
S float modf(float __x, float* __iptr) __attribute__((__nonnull__(2)));
S inline float modf(float __x, float* __iptr) { return modff(__x, __iptr); }
S inline float pow(float __x, float __y) { return powf(__x,__y); }
S inline float pow(float __x, int __y) { return powf(__x, (float)__y); }
S inline float sin(float __x) { return sinf(__x); }
S inline float sinh(float __x) { return sinhf(__x); }
S inline float sqrt(float __x) { return sqrtf(__x); }
S inline float _sqrt(float __x) { return _sqrtf(__x); }
S inline float tan(float __x) { return tanf(__x); }
S inline float tanh(float __x) { return tanhf(__x); }
S
S inline double abs(double __x) { return fabs(__x); }
S inline double pow(double __x, int __y)
S { return pow(__x, (double) __y); }
S
S#ifdef __HAVE_LONGDOUBLE
S inline long double abs(long double __x)
S { return (long double)fabsl(__x); }
S inline long double acos(long double __x)
S { return (long double)acosl(__x); }
S inline long double asin(long double __x)
S { return (long double)asinl(__x); }
S inline long double atan(long double __x)
S { return (long double)atanl(__x); }
S inline long double atan2(long double __y, long double __x)
S { return (long double)atan2l(__y, __x); }
S inline long double ceil(long double __x)
S { return (long double)ceill( __x); }
S inline long double cos(long double __x)
S { return (long double)cosl(__x); }
S inline long double cosh(long double __x)
S { return (long double)coshl(__x); }
S inline long double exp(long double __x)
S { return (long double)expl(__x); }
S inline long double fabs(long double __x)
S { return (long double)fabsl(__x); }
S inline long double floor(long double __x)
S { return (long double)floorl(__x); }
S inline long double fmod(long double __x, long double __y)
S { return (long double)fmodl(__x, __y); }
S long double frexp(long double __x, int* __p) __attribute__((__nonnull__(2)));
S inline long double frexp(long double __x, int* __p)
S { return (long double)frexpl(__x, __p); }
S inline long double ldexp(long double __x, int __exp)
S { return (long double)ldexpl(__x, __exp); }
S inline long double log(long double __x)
S { return (long double)logl(__x); }
S inline long double log10(long double __x)
S { return (long double)log10l(__x); }
S long double modf(long double __x, long double* __p) __attribute__((__nonnull__(2)));
S inline long double modf(long double __x, long double* __p)
S { return (long double)modfl(__x, __p); }
S inline long double pow(long double __x, long double __y)
S { return (long double)powl(__x, __y); }
S inline long double pow(long double __x, int __y)
S { return (long double)powl(__x, __y); }
S inline long double sin(long double __x)
S { return (long double)sinl(__x); }
S inline long double sinh(long double __x)
S { return (long double)sinhl(__x); }
S inline long double sqrt(long double __x)
S { return (long double)sqrtl(__x); }
S inline long double _sqrt(long double __x)
S { return (long double)_sqrt((double) __x); }
S inline long double tan(long double __x)
S { return (long double)tanl(__x); }
S inline long double tanh(long double __x)
S { return (long double)tanhl(__x); }
S#endif
S
S#if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
S inline float acosh(float __x) { return acoshf(__x); }
S inline float asinh(float __x) { return asinhf(__x); }
S inline float atanh(float __x) { return atanhf(__x); }
S inline float cbrt(float __x) { return cbrtf(__x); }
S inline float erf(float __x) { return erff(__x); }
S inline float erfc(float __x) { return erfcf(__x); }
S inline float expm1(float __x) { return expm1f(__x); }
S inline float log1p(float __x) { return log1pf(__x); }
S inline float hypot(float __x, float __y) { return hypotf(__x, __y); }
S inline float lgamma(float __x) { return lgammaf(__x); }
S inline float remainder(float __x, float __y) { return remainderf(__x, __y); }
S inline float rint(float __x) { return rintf(__x); }
S#endif
S
S#ifdef __USE_C99_MATH
S inline float exp2(float __x) { return exp2f(__x); }
S inline float fdim(float __x, float __y) { return fdimf(__x, __y); }
S inline float fma(float __x, float __y, float __z) { return fmaf(__x, __y, __z); }
S inline float fmax(float __x, float __y) { return fmaxf(__x, __y); }
S inline float fmin(float __x, float __y) { return fminf(__x, __y); }
S inline float log2(float __x) { return log2f(__x); }
S inline _ARMABI long lrint(float __x) { return lrintf(__x); }
S inline _ARMABI __LONGLONG llrint(float __x) { return llrintf(__x); }
S inline _ARMABI long lround(float __x) { return lroundf(__x); }
S inline _ARMABI __LONGLONG llround(float __x) { return llroundf(__x); }
S inline _ARMABI_FPEXCEPT float nearbyint(float __x) { return nearbyintf(__x); }
S inline float remquo(float __x, float __y, int *__q) { return remquof(__x, __y, __q); }
S inline _ARMABI_FPEXCEPT float round(float __x) { return roundf(__x); }
S inline float tgamma(float __x) { return tgammaf(__x); }
S inline _ARMABI_FPEXCEPT float trunc(float __x) { return truncf(__x); }
S
S inline int (fpclassify)(float __x) { return fpclassify(__x); }
S inline bool (isfinite)(float __x) { return isfinite(__x); }
S inline bool (isgreater)(float __x, float __y) { return isgreater(__x, __y); }
S inline bool (isgreaterequal)(float __x, float __y) { return isgreaterequal(__x, __y); }
S inline bool (isinf)(float __x) { return isinf(__x); }
S inline bool (isless)(float __x, float __y) { return isless(__x, __y); }
S inline bool (islessequal)(float __x, float __y) { return islessequal(__x, __y); }
S inline bool (islessgreater)(float __x, float __y) { return islessgreater(__x, __y); }
S inline bool (isnan)(float __x) { return isnan(__x); }
S inline bool (isnormal)(float __x) { return isnormal(__x); }
S inline bool (isunordered)(float __x, float __y) { return isunordered(__x, __y); }
S
S#ifdef __HAVE_LONGDOUBLE
S inline long double acosh(long double __x) { return acoshl(__x); }
S inline long double asinh(long double __x) { return asinhl(__x); }
S inline long double atanh(long double __x) { return atanhl(__x); }
S inline long double cbrt(long double __x) { return cbrtl(__x); }
S inline long double erf(long double __x) { return erfl(__x); }
S inline long double erfc(long double __x) { return erfcl(__x); }
S inline long double expm1(long double __x) { return expm1l(__x); }
S inline long double log1p(long double __x) { return log1pl(__x); }
S inline long double hypot(long double __x, long double __y) { return hypotl(__x, __y); }
S inline long double lgamma(long double __x) { return lgammal(__x); }
S inline long double remainder(long double __x, long double __y) { return remainderl(__x, __y); }
S inline long double rint(long double __x) { return rintl(__x); }
S inline long double exp2(long double __x) { return exp2l(__x); }
S inline long double fdim(long double __x, long double __y) { return fdiml(__x, __y); }
S inline long double fma(long double __x, long double __y, long double __z) { return fmal(__x, __y, __z); }
S inline long double fmax(long double __x, long double __y) { return fmaxl(__x, __y); }
S inline long double fmin(long double __x, long double __y) { return fminl(__x, __y); }
S inline long double log2(long double __x) { return log2l(__x); }
S inline _ARMABI long lrint(long double __x) { return lrintl(__x); }
S inline _ARMABI __LONGLONG llrint(long double __x) { return llrintl(__x); }
S inline _ARMABI long lround(long double __x) { return lroundl(__x); }
S inline _ARMABI __LONGLONG llround(long double __x) { return llroundl(__x); }
S inline _ARMABI_FPEXCEPT long double nearbyint(long double __x) { return nearbyintl(__x); }
S inline long double remquo(long double __x, long double __y, int *__q) { return remquol(__x, __y, __q); }
S inline _ARMABI_FPEXCEPT long double round(long double __x) { return roundl(__x); }
S inline long double tgamma(long double __x) { return tgammal(__x); }
S inline _ARMABI_FPEXCEPT long double trunc(long double __x) { return truncl(__x); }
S inline int (fpclassify)(long double __x) { return fpclassify(__x); }
S inline bool (isfinite)(long double __x) { return isfinite(__x); }
S inline bool (isgreater)(long double __x, long double __y) { return isgreater(__x, __y); }
S inline bool (isgreaterequal)(long double __x, long double __y) { return isgreaterequal(__x, __y); }
S inline bool (isinf)(long double __x) { return isinf(__x); }
S inline bool (isless)(long double __x, long double __y) { return isless(__x, __y); }
S inline bool (islessequal)(long double __x, long double __y) { return islessequal(__x, __y); }
S inline bool (islessgreater)(long double __x, long double __y) { return islessgreater(__x, __y); }
S inline bool (isnan)(long double __x) { return isnan(__x); }
S inline bool (isnormal)(long double __x) { return isnormal(__x); }
S inline bool (isunordered)(long double __x, long double __y) { return isunordered(__x, __y); }
S#endif
S
S#undef fpclassify
S#undef isfinite
S#undef isgreater
S#undef isgreaterequal
S#undef isinf
S#undef isless
S#undef islessequal
S#undef islessgreater
S#undef isnan
S#undef isnormal
S#undef isunordered
S
S#endif
S
S }
N#endif
N
N #ifdef __cplusplus
S } /* extern "C" */
S } /* namespace std */
N #endif
N #endif /* __MATH_DECLS */
N
N #if _AEABI_PORTABILITY_LEVEL != 0 && !defined _AEABI_PORTABLE
X #if _AEABI_PORTABILITY_LEVEL != 0 && !0L
S #define _AEABI_PORTABLE
N #endif
N
N #if defined(__cplusplus) && !defined(__MATH_NO_EXPORTS)
X #if 0L && !0L
S using ::std::__use_accurate_range_reduction;
S #ifndef __ARMCOMPILER_LIBCXX
S using ::std::abs;
S #endif
S using ::std::acos;
S using ::std::asin;
S using ::std::atan2;
S using ::std::atan;
S using ::std::ceil;
S using ::std::cos;
S using ::std::cosh;
S using ::std::exp;
S using ::std::fabs;
S using ::std::floor;
S using ::std::fmod;
S using ::std::frexp;
S using ::std::ldexp;
S using ::std::log10;
S using ::std::log;
S using ::std::modf;
S using ::std::pow;
S using ::std::sin;
S using ::std::sinh;
S using ::std::sqrt;
S using ::std::_sqrt;
S using ::std::_sqrtf;
S using ::std::tan;
S using ::std::tanh;
S using ::std::_fabsf;
S /* C99 float and long double versions in already-C89-reserved namespace */
S using ::std::acosf;
S using ::std::acosl;
S using ::std::asinf;
S using ::std::asinl;
S using ::std::atan2f;
S using ::std::atan2l;
S using ::std::atanf;
S using ::std::atanl;
S using ::std::ceilf;
S using ::std::ceill;
S using ::std::cosf;
S using ::std::coshf;
S using ::std::coshl;
S using ::std::cosl;
S using ::std::expf;
S using ::std::expl;
S using ::std::fabsf;
S using ::std::fabsl;
S using ::std::floorf;
S using ::std::floorl;
S using ::std::fmodf;
S using ::std::fmodl;
S using ::std::frexpf;
S using ::std::frexpl;
S using ::std::ldexpf;
S using ::std::ldexpl;
S using ::std::log10f;
S using ::std::log10l;
S using ::std::logf;
S using ::std::logl;
S using ::std::modff;
S using ::std::modfl;
S using ::std::powf;
S using ::std::powl;
S using ::std::sinf;
S using ::std::sinhf;
S using ::std::sinhl;
S using ::std::sinl;
S using ::std::sqrtf;
S using ::std::sqrtl;
S using ::std::tanf;
S using ::std::tanhf;
S using ::std::tanhl;
S using ::std::tanl;
S #if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
S /* C99 additions which for historical reasons appear in non-strict mode */
S using ::std::acosh;
S using ::std::asinh;
S using ::std::atanh;
S using ::std::cbrt;
S using ::std::copysign;
S using ::std::copysignf;
S using ::std::erf;
S using ::std::erfc;
S using ::std::expm1;
S using ::std::hypot;
S using ::std::ilogb;
S using ::std::ilogbf;
S using ::std::ilogbl;
S using ::std::lgamma;
S using ::std::log1p;
S using ::std::logb;
S using ::std::logbf;
S using ::std::logbl;
S using ::std::nextafter;
S using ::std::nextafterf;
S using ::std::nextafterl;
S using ::std::nexttoward;
S using ::std::nexttowardf;
S using ::std::nexttowardl;
S using ::std::remainder;
S using ::std::rint;
S using ::std::scalbln;
S using ::std::scalblnf;
S using ::std::scalblnl;
S using ::std::scalbn;
S using ::std::scalbnf;
S using ::std::scalbnl;
S using ::std::math_errhandling;
S using ::std::acoshf;
S using ::std::acoshl;
S using ::std::asinhf;
S using ::std::asinhl;
S using ::std::atanhf;
S using ::std::atanhl;
S using ::std::copysignl;
S using ::std::cbrtf;
S using ::std::cbrtl;
S using ::std::erff;
S using ::std::erfl;
S using ::std::erfcf;
S using ::std::erfcl;
S using ::std::expm1f;
S using ::std::expm1l;
S using ::std::log1pf;
S using ::std::log1pl;
S using ::std::hypotf;
S using ::std::hypotl;
S using ::std::lgammaf;
S using ::std::lgammal;
S using ::std::remainderf;
S using ::std::remainderl;
S using ::std::rintf;
S using ::std::rintl;
S /* New in C99. */
S using ::std::float_t;
S using ::std::double_t;
S #endif
S #if (defined(__clang__) && !defined(__STRICT_ANSI)) || defined(__USE_C99_MATH)
S /* Functions new in C99. */
S using ::std::exp2;
S using ::std::exp2f;
S using ::std::exp2l;
S using ::std::fdim;
S using ::std::fdimf;
S using ::std::fdiml;
S using ::std::fma;
S using ::std::fmaf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::fmal;
S#endif
S using ::std::fmax;
S using ::std::fmaxf;
S using ::std::fmaxl;
S using ::std::fmin;
S using ::std::fminf;
S using ::std::fminl;
S using ::std::log2;
S using ::std::log2f;
S using ::std::log2l;
S using ::std::lrint;
S using ::std::lrintf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::lrintl;
S#endif
S using ::std::llrint;
S using ::std::llrintf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::llrintl;
S#endif
S using ::std::lround;
S using ::std::lroundf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::lroundl;
S#endif
S using ::std::llround;
S using ::std::llroundf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::llroundl;
S#endif
S using ::std::nan;
S using ::std::nanf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::nanl;
S#endif
S using ::std::nearbyint;
S using ::std::nearbyintf;
S using ::std::nearbyintl;
S using ::std::remquo;
S using ::std::remquof;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::remquol;
S#endif
S using ::std::round;
S using ::std::roundf;
S using ::std::roundl;
S using ::std::tgamma;
S using ::std::tgammaf;
S using ::std::tgammal;
S using ::std::trunc;
S using ::std::truncf;
S using ::std::truncl;
S #endif
S
S #if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
S using ::std::fpclassify;
S using ::std::isfinite;
S using ::std::isgreater;
S using ::std::isgreaterequal;
S using ::std::isinf;
S using ::std::isless;
S using ::std::islessequal;
S using ::std::islessgreater;
S using ::std::isnan;
S using ::std::isnormal;
S using ::std::isunordered;
S #endif
N #endif
N
N#undef __LONGLONG
N
N#endif /* __math_h */
N
N/* end of math.h */
L 19 "..\src\common\tau_common.h" 2
N
N/*******************************************************************************
N* 2.Global constant and macro definitions using #define
N*******************************************************************************/
N/**
N * \name 通用常量定义
N * @{
N */
N//#define ENABLE 1
N//#define DISABLE 0
N
N#define ON 1
N#define OFF 0
N
N#define NONE 0
N#define EOS '\0'
N
N/*
N#ifndef TRUE
N#define TRUE 1
N#endif
N
N#ifndef FALSE
N#define FALSE 0
N#endif
N*/
N
N#ifndef __cplusplus
N #define true 1
N #define false 0
N #define bool _Bool
N#endif /* ifndef __cplusplus */
N
N#ifndef NULL
N #define NULL ((void *)0)
N#endif
N
N#define TAU_LITTLE_ENDIAN 1234 /**< \brief 小端模式 */
N#define TAU_BIG_ENDIAN 3412 /**< \brief 大端模式 */
N
N/** @} */
N
N/******************************************************************************/
N
N/**
N * \name 常用宏定义
N * @{
N */
N
N#ifdef __cplusplus
S #define __I volatile /*!< Defines 'read only' permissions */
N#else
N #define __I volatile const /*!< Defines 'read only' permissions */
N#endif
N#define __O volatile /*!< Defines 'write only' permissions */
N#define __IO volatile /*!< Defines 'read / write' permissions */
N
N#define TAU_INLINE inline
N#define TAU_STATIC_INLINE static inline
N#define TAU_STATIC static
N#define TAU_CONST const
N#define TAU_EXTERN extern
N
N#define MIN(x, y) (((x) < (y)) ? (x) : (y))
N#define MAX(x, y) (((x) > (y)) ? (x) : (y))
N
N/**
N * \brief 求结构体成员的偏移
N * \attention 不同平台上,由于成员大小和内存对齐等原因,
N * 同一结构体成员的偏移可能是不一样的
N *
N * \par 示例
N * \code
N * struct my_struct {
N * int m1;
N * char m2;
N * };
N * int offset_m2;
N *
N * offset_m2 = TAU_OFFSET(struct my_struct, m2);
N * \endcode
N */
N#define TAU_OFFSET(structure, member) ((uint32_t)(&(((structure *)0)->member)))
N
N/** @} */
N
N/**
N * \brief 通过结构体成员指针获取包含该结构体成员的结构体
N *
N * \param ptr 指向结构体成员的指针
N * \param type 结构体类型
N * \param member 结构体中该成员的名称
N *
N * \par 示例
N * \code
N * struct my_struct = {
N * int m1;
N * char m2;
N * };
N * struct my_struct my_st;
N * char *p_m2 = &my_st.m2;
N * struct my_struct *p_st = TAU_CONTAINER_OF(p_m2, struct my_struct, m2);
N * \endcode
N */
N#define TAU_CONTAINER_OF(ptr, type, member) \
N ((type *)((char *)(ptr)-TAU_OFFSET(type, member)))
X#define TAU_CONTAINER_OF(ptr, type, member) ((type *)((char *)(ptr)-TAU_OFFSET(type, member)))
N
N/**
N * \brief 计算结构体成员的大小
N *
N * \code
N * struct a = {
N * uint32_t m1;
N * uint32_t m2;
N * };
N * int size_m2;
N *
N * size_m2 = TAU_MEMBER_SIZE(a, m2); //size_m2 = 4
N * \endcode
N */
N#define TAU_MEMBER_SIZE(structure, member) (sizeof(((structure *)0)->member))
N
N/**
N * \brief 计算数组元素个数
N *
N * \code
N * int a[] = {0, 1, 2, 3};
N * int element_a = TAU_NELEMENTS(a); // element_a = 4
N * \endcode
N */
N#define TAU_NELEMENTS(array) (sizeof(array) / sizeof((array)[0]))
N
N/**
N * \brief 向上舍入
N *
N * \param x 被运算的数
N * \param align 对齐因素
N *
N * \code
N * int size = TAU_ROUND_UP(15, 4); // size = 16
N * \endcode
N */
N#define TAU_ROUND_UP(x, align) (((int)(x)/(align))*(align) + (((int)(x)%(align)) ? (align) : 0))
N
N/**
N * \brief 向下舍入
N *
N * \param x 被运算的数
N * \param align 对齐因素
N *
N * \code
N * int size = TAU_ROUND_DOWN(15, 4); // size = 12
N * \endcode
N */
N#define TAU_ROUND_DOWN(x, align) (((int)(x)/(align))*(align))
N
N/** \brief 倍数向上舍入 */
N#define TAU_DIV_ROUND_UP(n, d) (((n) + (d)-1) / (d))
N
N/**
N * \brief 测试是否对齐
N *
N * \param x 被运算的数
N * \param align 对齐因素必须为2的乘方
N *
N * \code
N * if (TAU_ALIGNED(x, 4) {
N * ; // x对齐
N * } else {
N * ; // x不对齐
N * }
N * \endcode
N */
N#define TAU_ALIGNED(x, align) (((int)(x) & (align - 1)) == 0)
N
N/** \brief 将1字节BCD数据转换为16进制数据 */
N#define TAU_BCD_TO_HEX(val) (((val)&0x0f) + ((val) >> 4) * 10)
N
N/** \brief 将1字节16进制数据转换为BCD数据 */
N#define TAU_HEX_TO_BCD(val) ((((val) / 10) << 4) + (val) % 10)
N
N/**
N * \brief 向上取整
N */
N#define TAU_CEIL(val) ceil(val)
N
N
N/*! @brief Construct the version number for drivers. */
N#define MAKE_VERSION(major, minor, bugfix) (((major) << 16) | ((minor) << 8) | (bugfix))
N
N
N/*******************************************************************************
N* 3.Global structures, unions and enumerations using typedef
N*******************************************************************************/
N/* \brief 通用回调函数指针定义 */
Ntypedef void (*fcb_type)(void *data);
N
N#endif /* __TAU_COMMON_H */
L 16 "..\src\sdk\include\hal_system.h" 2
N
N/*******************************************************************************
N* 2.Global constant and macro definitions using #define
N*******************************************************************************/
N
N/*******************************************************************************
N* 3.Global structures, unions and enumerations using typedef
N*******************************************************************************/
N
N/*******************************************************************************
N* 4.Global variable extern declarations
N*******************************************************************************/
N
N/*******************************************************************************
N* 5.Global function prototypes
N*******************************************************************************/
N
N/**
N* @brief system 鍒濆<E98D92><EFBFBD>
N* @param none
N* @retval none
N*/
Nvoid hal_system_init(uint32_t sysclk);
N
N/**
N* @brief system 鍒濆<E98D92><EFBFBD> console
N* @param baud_rate 娉㈢壒鐜<E5A392>
N* @retval none
N*/
Nvoid hal_system_init_console(uint32_t baud_rate);
N
N/**
N* @brief mcu杩涘叆idle妯″紡,绛夊緟涓<E7B79F>柇鍞ら啋
N* @param disable_systick: 杩涘叆idle鏃舵槸鍚﹀叧闂璼ystick(閫€鍑篿dle 鎭㈠<E98EAD>systick)
N* @retval none
N*/
Nvoid hal_system_idle_mode(bool disable_systick);
Xvoid hal_system_idle_mode(_Bool disable_systick);
N
N/**
N* @brief 娉ㄥ唽systick鍥炶皟鍑芥暟
N* @param cb_func锛氬洖璋冨嚱鏁板湴鍧€
N* @retval 鏃<>
N*/
Nvoid hal_system_register_systick_cb(fcb_type cb_func);
N
N/**
N* @brief 鍚<>姩sys tickt
N* @param ms: sys tickt 闂撮殧, 鑼冨洿1-10ms
N* @retval true/false
N*/
Nbool hal_system_enable_systick(uint8_t ms);
X_Bool hal_system_enable_systick(uint8_t ms);
N
N/**
N* @brief 鑾峰彇systickt
N* @param none
N* @retval 褰撳墠systickt鍊<74>
N*/
Nbool hal_system_disable_systick(void);
X_Bool hal_system_disable_systick(void);
N
N/**
N* @brief 鑾峰彇systickt
N* @param none
N* @retval 褰撳墠systickt鍊<74>
N*/
Nuint32_t hal_system_get_tick(void);
N
N/**
N* @brief 杩涘叆deep sleep mode 妯″紡, 绛夊緟AP_RSTN 鍞ら啋
N* @param polarity true:涓婂崌娌垮敜閱<E6959C>, false:涓嬮檷娌垮敜閱<E6959C>
N* @retval none
N*/
Nvoid hal_system_deep_sleep_mode(bool polarity);
Xvoid hal_system_deep_sleep_mode(_Bool polarity);
N
N/**
N* @brief 閰嶇疆鍏变韩flash寮€鍏<E282AC>(浣跨敤杩囧悗娉ㄦ剰鍏抽棴,甯稿紑鍔熻€椾細澧炲姞)
N* @param enable:true:鍙<>€氳繃F_SPI璁块棶鍐呴儴flash , false:涓嶅彲閫氳繃F_SPI璁块棶鍐呴儴flash
N* @retval true/false
N*/
Nbool hal_system_share_flash_mode(bool enable);
X_Bool hal_system_share_flash_mode(_Bool enable);
N
N/**
N* @brief sleep mode 閰嶇疆
N* @param enable
N* @retval none
N*/
Nvoid hal_system_sleep_mode(bool enable);
Xvoid hal_system_sleep_mode(_Bool enable);
N
N/**
N* @brief reset chip
N* @param none
N* @retval none
N*/
Nvoid hal_system_reset_chip(void);
N
N/**
N* @brief 寮€鍏砅VD妫€娴<E282AC>
N* @param none
N* @retval none
N*/
Nvoid hal_system_set_pvd(bool enable);
Xvoid hal_system_set_pvd(_Bool enable);
N
N/**
N* @brief VCC鐢垫簮寮€鍏筹紝
N* 浣跨敤鍦烘櫙: VCC鎺夌數锛<E695B8>13D涓<44>13M浣跨敤澶栫亴鐢垫簮鏃讹紝鍏抽棴鍐呴儴VCC渚涚數,闃叉<E99783>鐢垫簮鍊掔亴
N* @param enable: true:鎵撳紑CP, false:鍏抽棴CP
N* @retval none
N*/
Nvoid hal_system_set_vcc(bool enable);
Xvoid hal_system_set_vcc(_Bool enable);
N
N/**
N* @brief 鐢ㄦ埛瀛楄妭鏁扮粍褰㈠紡浠巉lash璇诲彇鏁版嵁,鎸夐〉璇诲彇锛屾瘡椤<E798A1>1024瀛楄妭
N* @param *usr_cfg_t_addr(鏁扮粍棣栧湴鍧€),
N usr_cfg_t_size(鏁扮粍澶у皬鍙<E79AAC>互瓒呰繃1024锛屽彲浠ユ寜椤佃<E6A4A4>涔熷彲杩炵画璺ㄩ〉璇<E38089>)
N flash_page 锛堥〉0~63锛<33>
N* @retval bool 鏃<>
N*/
Nbool hal_system_flash_read(uint8_t *usr_cfg_t_addr, uint16_t usr_cfg_t_size, uint8_t flash_page);
X_Bool hal_system_flash_read(uint8_t *usr_cfg_t_addr, uint16_t usr_cfg_t_size, uint8_t flash_page);
N
N/**
N* @brief 鐢ㄦ埛瀛楄妭鏁扮粍褰㈠紡瀛樺叆flash(娆℃暟鏈夐檺锛屼笉鍙<E7AC89><E98D99>绻佸啓鍏<E59593>),鎸夐〉鍐欏叆锛屾瘡椤<E798A1>1024瀛楄妭
N* @param *usr_cfg_t_addr(鏁扮粍棣栧湴鍧€),
N usr_cfg_t_size(鏁扮粍澶у皬鍙<E79AAC>互瓒呰繃1024锛屽彲浠ユ寜椤靛啓涔熷彲杩炵画璺ㄩ〉鍐欏叆)锛<>
N 鎺ㄨ崘鎸夐〉椤哄簭鍐欏叆鏂瑰紡锛岀<E9949B>涓€娆″繀椤讳粠0椤靛紑濮嬪啓鍏ワ紝鍚庣画鎵嶅彲1~63浠绘剰椤靛啓鍏<E59593>
N flash_page 锛堝啓鍏ラ〉0~63锛<33>
N* @retval bool 鏍¢獙size鏄<65>惁瓒呭嚭
N*/
Nbool hal_system_flash_write(uint8_t *usr_cfg_t_addr, uint16_t usr_cfg_t_size, uint8_t flash_page);
X_Bool hal_system_flash_write(uint8_t *usr_cfg_t_addr, uint16_t usr_cfg_t_size, uint8_t flash_page);
N
N#if defined(ISP_568) || defined(ISP_368)
X#if 1L || 0L
N /**
N * @brief 鎺у埗DPHY鍐呴儴鏍″噯寮€鍏<E282AC>
N * @param en: 浣胯兘寮€鍏<E282AC>
N * @retval none
N */
N void hal_system_set_phy_calibration(bool en);
X void hal_system_set_phy_calibration(_Bool en);
N#endif
N
N#endif //__HAL_SYSTEM_H__
L 12 "..\src\board\board.c" 2
N#include "ArmCM0.h"
L 1 "..\src\sdk\include\M0\ArmCM0.h" 1
N/**************************************************************************//**
N * @file ARMCM0.h
N * @brief CMSIS Core Peripheral Access Layer Header File for
N * ARMCM0 Device
N * @version V5.3.1
N * @date 09. July 2018
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#ifndef ARMCM0_H
N#define ARMCM0_H
N
N#ifdef __cplusplus
Sextern "C" {
N#endif
N
N
N/* ------------------------- Interrupt Number Definition ------------------------ */
N
Ntypedef enum IRQn
N{
N /* ------------------- Processor Exceptions Numbers ----------------------------- */
N NonMaskableInt_IRQn = -14, /* 2 Non Maskable Interrupt */
N HardFault_IRQn = -13, /* 3 HardFault Interrupt */
N SVCall_IRQn = -5, /* 11 SV Call Interrupt */
N PendSV_IRQn = -2, /* 14 Pend SV Interrupt */
N SysTick_IRQn = -1, /* 15 System Tick Interrupt */
N
N /* ------------------- Processor Interrupt Numbers ------------------------------ */
N VIDC_IRQn = 0,
N LCDC_IRQn = 1,
N MIPI_RX_IRQn = 2,
N MIPI_TX_IRQn = 3,
N MEMC_IRQn = 4,
N VPRE_IRQn = 5,
N FLSCTRL_IRQn = 6,
N DMA_IRQn = 7,
N TIMER0_IRQn = 8,
N TIMER1_IRQn = 9,
N TIMER2_IRQn = 10,
N TIMER3_IRQn = 11,
N WDG_IRQn = 12,
N UART_IRQn = 13,
N I2C0_IRQn = 14,
N I2C1_IRQn = 15,
N SPIS_IRQn = 16,
N SPIM_IRQn = 17,
N ADC_IRQn = 18,
N PWMDET_IRQn = 19,
N OTP_IRQn = 20,
N SWIRE_IRQn = 21,
N PVD_IRQn = 22,
N AP_NRESET_IRQn = 23,
N EXTI_INT0_IRQn = 24,
N EXTI_INT1_IRQn = 25,
N EXTI_INT2_IRQn = 26,
N EXTI_INT3_IRQn = 27,
N EXTI_INT4_IRQn = 28,
N EXTI_INT5_IRQn = 29,
N EXTI_INT6_IRQn = 30,
N EXTI_INT7_IRQn = 31
N /* Interrupts 10 .. 31 are left out */
N} IRQn_Type;
N
N
N
N
N/* ================================================================================ */
N/* ================ Processor and Core Peripheral Section ================ */
N/* ================================================================================ */
N
N/* ------- Start of section using anonymous unions and disabling warnings ------- */
N#if defined (__CC_ARM)
X#if 1L
N#pragma push
N#pragma anon_unions
N#elif defined (__ICCARM__)
X#elif 0L
S#pragma language=extended
S#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
S#pragma clang diagnostic push
S#pragma clang diagnostic ignored "-Wc11-extensions"
S#pragma clang diagnostic ignored "-Wreserved-id-macro"
S#elif defined (__GNUC__)
S/* anonymous unions are enabled by default */
S#elif defined (__TMS470__)
S/* anonymous unions are enabled by default */
S#elif defined (__TASKING__)
S#pragma warning 586
S#elif defined (__CSMC__)
S/* anonymous unions are enabled by default */
S#else
S#warning Not supported compiler type
N#endif
N
N/* -------- Configuration of Core Peripherals ----------------------------------- */
N#define __CM0_REV 0x0000U /* Core revision r0p0 */
N#define __MPU_PRESENT 0U /* no MPU present */
N#define __VTOR_PRESENT 0U /* no VTOR present */
N#define __NVIC_PRIO_BITS 2U /* Number of Bits used for Priority Levels */ //20220228
N#define __Vendor_SysTickConfig 0U /* Set to 1 if different SysTick Config is used */
N
N#define __FPU_PRESENT 0U /* Set to 1 if FPU is present */
N#define __FPU_DP 0U /* single precision FPU */
N#define __ICACHE_PRESENT 0U /* Set to 1 if I-CACHE is present */
N#define __DCACHE_PRESENT 0U /* Set to 1 if D-CACHE is present */
N#define __DSP_PRESENT 0U /* no DSP extension present */
N
N#define FPGA_MODE 0
N#define EDA_MODE 0
N#define EXTERN_24M 0
N#define CPU_CLK_100M 0
N
N#include "core_cm0.h" /* Processor and core peripherals */
L 1 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\core_cm0.h" 1
N/**************************************************************************//**
N * @file core_cm0.h
N * @brief CMSIS Cortex-M0 Core Peripheral Access Layer Header File
N * @version V5.0.6
N * @date 13. March 2019
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2019 Arm Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#if defined ( __ICCARM__ )
X#if 0L
S #pragma system_include /* treat file as system include file for MISRA check */
S#elif defined (__clang__)
X#elif 0L
S #pragma clang system_header /* treat file as system include file */
N#endif
N
N#ifndef __CORE_CM0_H_GENERIC
N#define __CORE_CM0_H_GENERIC
N
N#include <stdint.h>
N
N#ifdef __cplusplus
S extern "C" {
N#endif
N
N/**
N \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
N CMSIS violates the following MISRA-C:2004 rules:
N
N \li Required Rule 8.5, object/function definition in header file.<br>
N Function definitions in header files are used to allow 'inlining'.
N
N \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
N Unions are used for effective representation of core registers.
N
N \li Advisory Rule 19.7, Function-like macro defined.<br>
N Function-like macros are used to allow more efficient code.
N */
N
N
N/*******************************************************************************
N * CMSIS definitions
N ******************************************************************************/
N/**
N \ingroup Cortex_M0
N @{
N */
N
N#include "cmsis_version.h"
L 1 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\cmsis_version.h" 1
N/**************************************************************************//**
N * @file cmsis_version.h
N * @brief CMSIS Core(M) Version definitions
N * @version V5.0.2
N * @date 19. April 2017
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2017 ARM Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#if defined ( __ICCARM__ )
X#if 0L
S #pragma system_include /* treat file as system include file for MISRA check */
S#elif defined (__clang__)
X#elif 0L
S #pragma clang system_header /* treat file as system include file */
N#endif
N
N#ifndef __CMSIS_VERSION_H
N#define __CMSIS_VERSION_H
N
N/* CMSIS Version definitions */
N#define __CM_CMSIS_VERSION_MAIN ( 5U) /*!< [31:16] CMSIS Core(M) main version */
N#define __CM_CMSIS_VERSION_SUB ( 1U) /*!< [15:0] CMSIS Core(M) sub version */
N#define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | \
N __CM_CMSIS_VERSION_SUB ) /*!< CMSIS Core(M) version number */
X#define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | __CM_CMSIS_VERSION_SUB )
N#endif
L 64 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\core_cm0.h" 2
N
N/* CMSIS CM0 definitions */
N#define __CM0_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
N#define __CM0_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
N#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16U) | \
N __CM0_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
X#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16U) | __CM0_CMSIS_VERSION_SUB )
N
N#define __CORTEX_M (0U) /*!< Cortex-M Core */
N
N/** __FPU_USED indicates whether an FPU is used or not.
N This core does not support an FPU at all
N*/
N#define __FPU_USED 0U
N
N#if defined ( __CC_ARM )
X#if 1L
N #if defined __TARGET_FPU_VFP
X #if 0L
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
N #endif
N
N#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
X#elif 1L && (5060750 >= 6010050)
S #if defined __ARM_FP
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
S#elif defined ( __GNUC__ )
S #if defined (__VFP_FP__) && !defined(__SOFTFP__)
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
S#elif defined ( __ICCARM__ )
S #if defined __ARMVFP__
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
S#elif defined ( __TI_ARM__ )
S #if defined __TI_VFP_SUPPORT__
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
S#elif defined ( __TASKING__ )
S #if defined __FPU_VFP__
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
S#elif defined ( __CSMC__ )
S #if ( __CSMC__ & 0x400U)
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
N#endif
N
N#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
L 1 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\cmsis_compiler.h" 1
N/**************************************************************************//**
N * @file cmsis_compiler.h
N * @brief CMSIS compiler generic header file
N * @version V5.1.0
N * @date 09. October 2018
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#ifndef __CMSIS_COMPILER_H
N#define __CMSIS_COMPILER_H
N
N#include <stdint.h>
N
N/*
N * Arm Compiler 4/5
N */
N#if defined ( __CC_ARM )
X#if 1L
N #include "cmsis_armcc.h"
L 1 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\cmsis_armcc.h" 1
N/**************************************************************************//**
N * @file cmsis_armcc.h
N * @brief CMSIS compiler ARMCC (Arm Compiler 5) header file
N * @version V5.0.5
N * @date 14. December 2018
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#ifndef __CMSIS_ARMCC_H
N#define __CMSIS_ARMCC_H
N
N
N#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677)
X#if 1L && (5060750 < 400677)
S #error "Please use Arm Compiler Toolchain V4.0.677 or later!"
N#endif
N
N/* CMSIS compiler control architecture macros */
N#if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \
N (defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) )
X#if ((0L && (__TARGET_ARCH_6_M == 1)) || (1L && (1 == 1)) )
N #define __ARM_ARCH_6M__ 1
N#endif
N
N#if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1))
X#if (0L && (__TARGET_ARCH_7_M == 1))
S #define __ARM_ARCH_7M__ 1
N#endif
N
N#if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1))
X#if (0L && (__TARGET_ARCH_7E_M == 1))
S #define __ARM_ARCH_7EM__ 1
N#endif
N
N /* __ARM_ARCH_8M_BASE__ not applicable */
N /* __ARM_ARCH_8M_MAIN__ not applicable */
N
N/* CMSIS compiler control DSP macros */
N#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
X#if ((0L && (__ARM_ARCH_7EM__ == 1)) )
S #define __ARM_FEATURE_DSP 1
N#endif
N
N/* CMSIS compiler specific defines */
N#ifndef __ASM
N #define __ASM __asm
N#endif
N#ifndef __INLINE
N #define __INLINE __inline
N#endif
N#ifndef __STATIC_INLINE
N #define __STATIC_INLINE static __inline
N#endif
N#ifndef __STATIC_FORCEINLINE
N #define __STATIC_FORCEINLINE static __forceinline
N#endif
N#ifndef __NO_RETURN
N #define __NO_RETURN __declspec(noreturn)
N#endif
N#ifndef __USED
N #define __USED __attribute__((used))
N#endif
N#ifndef __WEAK
N #define __WEAK __attribute__((weak))
N#endif
N#ifndef __PACKED
N #define __PACKED __attribute__((packed))
N#endif
N#ifndef __PACKED_STRUCT
N #define __PACKED_STRUCT __packed struct
N#endif
N#ifndef __PACKED_UNION
N #define __PACKED_UNION __packed union
N#endif
N#ifndef __UNALIGNED_UINT32 /* deprecated */
N #define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x)))
N#endif
N#ifndef __UNALIGNED_UINT16_WRITE
N #define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val))
N#endif
N#ifndef __UNALIGNED_UINT16_READ
N #define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr)))
N#endif
N#ifndef __UNALIGNED_UINT32_WRITE
N #define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val))
N#endif
N#ifndef __UNALIGNED_UINT32_READ
N #define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr)))
N#endif
N#ifndef __ALIGNED
N #define __ALIGNED(x) __attribute__((aligned(x)))
N#endif
N#ifndef __RESTRICT
N #define __RESTRICT __restrict
N#endif
N
N/* ########################### Core Function Access ########################### */
N/** \ingroup CMSIS_Core_FunctionInterface
N \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
N @{
N */
N
N/**
N \brief Enable IRQ Interrupts
N \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
N Can only be executed in Privileged modes.
N */
N/* intrinsic void __enable_irq(); */
N
N
N/**
N \brief Disable IRQ Interrupts
N \details Disables IRQ interrupts by setting the I-bit in the CPSR.
N Can only be executed in Privileged modes.
N */
N/* intrinsic void __disable_irq(); */
N
N/**
N \brief Get Control Register
N \details Returns the content of the Control Register.
N \return Control Register value
N */
N__STATIC_INLINE uint32_t __get_CONTROL(void)
Xstatic __inline uint32_t __get_CONTROL(void)
N{
N register uint32_t __regControl __ASM("control");
X register uint32_t __regControl __asm("control");
N return(__regControl);
N}
N
N
N/**
N \brief Set Control Register
N \details Writes the given value to the Control Register.
N \param [in] control Control Register value to set
N */
N__STATIC_INLINE void __set_CONTROL(uint32_t control)
Xstatic __inline void __set_CONTROL(uint32_t control)
N{
N register uint32_t __regControl __ASM("control");
X register uint32_t __regControl __asm("control");
N __regControl = control;
N}
N
N
N/**
N \brief Get IPSR Register
N \details Returns the content of the IPSR Register.
N \return IPSR Register value
N */
N__STATIC_INLINE uint32_t __get_IPSR(void)
Xstatic __inline uint32_t __get_IPSR(void)
N{
N register uint32_t __regIPSR __ASM("ipsr");
X register uint32_t __regIPSR __asm("ipsr");
N return(__regIPSR);
N}
N
N
N/**
N \brief Get APSR Register
N \details Returns the content of the APSR Register.
N \return APSR Register value
N */
N__STATIC_INLINE uint32_t __get_APSR(void)
Xstatic __inline uint32_t __get_APSR(void)
N{
N register uint32_t __regAPSR __ASM("apsr");
X register uint32_t __regAPSR __asm("apsr");
N return(__regAPSR);
N}
N
N
N/**
N \brief Get xPSR Register
N \details Returns the content of the xPSR Register.
N \return xPSR Register value
N */
N__STATIC_INLINE uint32_t __get_xPSR(void)
Xstatic __inline uint32_t __get_xPSR(void)
N{
N register uint32_t __regXPSR __ASM("xpsr");
X register uint32_t __regXPSR __asm("xpsr");
N return(__regXPSR);
N}
N
N
N/**
N \brief Get Process Stack Pointer
N \details Returns the current value of the Process Stack Pointer (PSP).
N \return PSP Register value
N */
N__STATIC_INLINE uint32_t __get_PSP(void)
Xstatic __inline uint32_t __get_PSP(void)
N{
N register uint32_t __regProcessStackPointer __ASM("psp");
X register uint32_t __regProcessStackPointer __asm("psp");
N return(__regProcessStackPointer);
N}
N
N
N/**
N \brief Set Process Stack Pointer
N \details Assigns the given value to the Process Stack Pointer (PSP).
N \param [in] topOfProcStack Process Stack Pointer value to set
N */
N__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
Xstatic __inline void __set_PSP(uint32_t topOfProcStack)
N{
N register uint32_t __regProcessStackPointer __ASM("psp");
X register uint32_t __regProcessStackPointer __asm("psp");
N __regProcessStackPointer = topOfProcStack;
N}
N
N
N/**
N \brief Get Main Stack Pointer
N \details Returns the current value of the Main Stack Pointer (MSP).
N \return MSP Register value
N */
N__STATIC_INLINE uint32_t __get_MSP(void)
Xstatic __inline uint32_t __get_MSP(void)
N{
N register uint32_t __regMainStackPointer __ASM("msp");
X register uint32_t __regMainStackPointer __asm("msp");
N return(__regMainStackPointer);
N}
N
N
N/**
N \brief Set Main Stack Pointer
N \details Assigns the given value to the Main Stack Pointer (MSP).
N \param [in] topOfMainStack Main Stack Pointer value to set
N */
N__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
Xstatic __inline void __set_MSP(uint32_t topOfMainStack)
N{
N register uint32_t __regMainStackPointer __ASM("msp");
X register uint32_t __regMainStackPointer __asm("msp");
N __regMainStackPointer = topOfMainStack;
N}
N
N
N/**
N \brief Get Priority Mask
N \details Returns the current state of the priority mask bit from the Priority Mask Register.
N \return Priority Mask value
N */
N__STATIC_INLINE uint32_t __get_PRIMASK(void)
Xstatic __inline uint32_t __get_PRIMASK(void)
N{
N register uint32_t __regPriMask __ASM("primask");
X register uint32_t __regPriMask __asm("primask");
N return(__regPriMask);
N}
N
N
N/**
N \brief Set Priority Mask
N \details Assigns the given value to the Priority Mask Register.
N \param [in] priMask Priority Mask
N */
N__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
Xstatic __inline void __set_PRIMASK(uint32_t priMask)
N{
N register uint32_t __regPriMask __ASM("primask");
X register uint32_t __regPriMask __asm("primask");
N __regPriMask = (priMask);
N}
N
N
N#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
X#if ((0L && (__ARM_ARCH_7M__ == 1)) || (0L && (__ARM_ARCH_7EM__ == 1)) )
S
S/**
S \brief Enable FIQ
S \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
S Can only be executed in Privileged modes.
S */
S#define __enable_fault_irq __enable_fiq
S
S
S/**
S \brief Disable FIQ
S \details Disables FIQ interrupts by setting the F-bit in the CPSR.
S Can only be executed in Privileged modes.
S */
S#define __disable_fault_irq __disable_fiq
S
S
S/**
S \brief Get Base Priority
S \details Returns the current value of the Base Priority register.
S \return Base Priority register value
S */
S__STATIC_INLINE uint32_t __get_BASEPRI(void)
S{
S register uint32_t __regBasePri __ASM("basepri");
S return(__regBasePri);
S}
S
S
S/**
S \brief Set Base Priority
S \details Assigns the given value to the Base Priority register.
S \param [in] basePri Base Priority value to set
S */
S__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
S{
S register uint32_t __regBasePri __ASM("basepri");
S __regBasePri = (basePri & 0xFFU);
S}
S
S
S/**
S \brief Set Base Priority with condition
S \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
S or the new value increases the BASEPRI priority level.
S \param [in] basePri Base Priority value to set
S */
S__STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri)
S{
S register uint32_t __regBasePriMax __ASM("basepri_max");
S __regBasePriMax = (basePri & 0xFFU);
S}
S
S
S/**
S \brief Get Fault Mask
S \details Returns the current value of the Fault Mask register.
S \return Fault Mask register value
S */
S__STATIC_INLINE uint32_t __get_FAULTMASK(void)
S{
S register uint32_t __regFaultMask __ASM("faultmask");
S return(__regFaultMask);
S}
S
S
S/**
S \brief Set Fault Mask
S \details Assigns the given value to the Fault Mask register.
S \param [in] faultMask Fault Mask value to set
S */
S__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
S{
S register uint32_t __regFaultMask __ASM("faultmask");
S __regFaultMask = (faultMask & (uint32_t)1U);
S}
S
N#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
X#endif
N
N
N/**
N \brief Get FPSCR
N \details Returns the current value of the Floating Point Status/Control register.
N \return Floating Point Status/Control register value
N */
N__STATIC_INLINE uint32_t __get_FPSCR(void)
Xstatic __inline uint32_t __get_FPSCR(void)
N{
N#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
N (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
X#if ((1L && (0U == 1U)) && (1L && (0U == 1U)) )
S register uint32_t __regfpscr __ASM("fpscr");
S return(__regfpscr);
N#else
N return(0U);
N#endif
N}
N
N
N/**
N \brief Set FPSCR
N \details Assigns the given value to the Floating Point Status/Control register.
N \param [in] fpscr Floating Point Status/Control value to set
N */
N__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
Xstatic __inline void __set_FPSCR(uint32_t fpscr)
N{
N#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
N (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
X#if ((1L && (0U == 1U)) && (1L && (0U == 1U)) )
S register uint32_t __regfpscr __ASM("fpscr");
S __regfpscr = (fpscr);
N#else
N (void)fpscr;
N#endif
N}
N
N
N/*@} end of CMSIS_Core_RegAccFunctions */
N
N
N/* ########################## Core Instruction Access ######################### */
N/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
N Access to dedicated instructions
N @{
N*/
N
N/**
N \brief No Operation
N \details No Operation does nothing. This instruction can be used for code alignment purposes.
N */
N#define __NOP __nop
N
N
N/**
N \brief Wait For Interrupt
N \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
N */
N#define __WFI __wfi
N
N
N/**
N \brief Wait For Event
N \details Wait For Event is a hint instruction that permits the processor to enter
N a low-power state until one of a number of events occurs.
N */
N#define __WFE __wfe
N
N
N/**
N \brief Send Event
N \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
N */
N#define __SEV __sev
N
N
N/**
N \brief Instruction Synchronization Barrier
N \details Instruction Synchronization Barrier flushes the pipeline in the processor,
N so that all instructions following the ISB are fetched from cache or memory,
N after the instruction has been completed.
N */
N#define __ISB() do {\
N __schedule_barrier();\
N __isb(0xF);\
N __schedule_barrier();\
N } while (0U)
X#define __ISB() do { __schedule_barrier(); __isb(0xF); __schedule_barrier(); } while (0U)
N
N/**
N \brief Data Synchronization Barrier
N \details Acts as a special kind of Data Memory Barrier.
N It completes when all explicit memory accesses before this instruction complete.
N */
N#define __DSB() do {\
N __schedule_barrier();\
N __dsb(0xF);\
N __schedule_barrier();\
N } while (0U)
X#define __DSB() do { __schedule_barrier(); __dsb(0xF); __schedule_barrier(); } while (0U)
N
N/**
N \brief Data Memory Barrier
N \details Ensures the apparent order of the explicit memory operations before
N and after the instruction, without ensuring their completion.
N */
N#define __DMB() do {\
N __schedule_barrier();\
N __dmb(0xF);\
N __schedule_barrier();\
N } while (0U)
X#define __DMB() do { __schedule_barrier(); __dmb(0xF); __schedule_barrier(); } while (0U)
N
N
N/**
N \brief Reverse byte order (32 bit)
N \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
N \param [in] value Value to reverse
N \return Reversed value
N */
N#define __REV __rev
N
N
N/**
N \brief Reverse byte order (16 bit)
N \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
N \param [in] value Value to reverse
N \return Reversed value
N */
N#ifndef __NO_EMBEDDED_ASM
N__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
X__attribute__((section(".rev16_text"))) static __inline __asm uint32_t __REV16(uint32_t value)
N{
N rev16 r0, r0
N bx lr
N}
N#endif
N
N
N/**
N \brief Reverse byte order (16 bit)
N \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
N \param [in] value Value to reverse
N \return Reversed value
N */
N#ifndef __NO_EMBEDDED_ASM
N__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value)
X__attribute__((section(".revsh_text"))) static __inline __asm int16_t __REVSH(int16_t value)
N{
N revsh r0, r0
N bx lr
N}
N#endif
N
N
N/**
N \brief Rotate Right in unsigned value (32 bit)
N \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
N \param [in] op1 Value to rotate
N \param [in] op2 Number of Bits to rotate
N \return Rotated value
N */
N#define __ROR __ror
N
N
N/**
N \brief Breakpoint
N \details Causes the processor to enter Debug state.
N Debug tools can use this to investigate system state when the instruction at a particular address is reached.
N \param [in] value is ignored by the processor.
N If required, a debugger can use it to store additional information about the breakpoint.
N */
N#define __BKPT(value) __breakpoint(value)
N
N
N/**
N \brief Reverse bit order of value
N \details Reverses the bit order of the given value.
N \param [in] value Value to reverse
N \return Reversed value
N */
N#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
X#if ((0L && (__ARM_ARCH_7M__ == 1)) || (0L && (__ARM_ARCH_7EM__ == 1)) )
S #define __RBIT __rbit
N#else
N__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
X__attribute__((always_inline)) static __inline uint32_t __RBIT(uint32_t value)
N{
N uint32_t result;
N uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
N
N result = value; /* r will be reversed bits of v; first get LSB of v */
N for (value >>= 1U; value != 0U; value >>= 1U)
N {
N result <<= 1U;
N result |= value & 1U;
N s--;
N }
N result <<= s; /* shift when v's highest bits are zero */
N return result;
N}
N#endif
N
N
N/**
N \brief Count leading zeros
N \details Counts the number of leading zeros of a data value.
N \param [in] value Value to count the leading zeros
N \return number of leading zeros in value
N */
N#define __CLZ __clz
N
N
N#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
X#if ((0L && (__ARM_ARCH_7M__ == 1)) || (0L && (__ARM_ARCH_7EM__ == 1)) )
S
S/**
S \brief LDR Exclusive (8 bit)
S \details Executes a exclusive LDR instruction for 8 bit value.
S \param [in] ptr Pointer to data
S \return value of type uint8_t at (*ptr)
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
S#else
S #define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop")
S#endif
S
S
S/**
S \brief LDR Exclusive (16 bit)
S \details Executes a exclusive LDR instruction for 16 bit values.
S \param [in] ptr Pointer to data
S \return value of type uint16_t at (*ptr)
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
S#else
S #define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop")
S#endif
S
S
S/**
S \brief LDR Exclusive (32 bit)
S \details Executes a exclusive LDR instruction for 32 bit values.
S \param [in] ptr Pointer to data
S \return value of type uint32_t at (*ptr)
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
S#else
S #define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop")
S#endif
S
S
S/**
S \brief STR Exclusive (8 bit)
S \details Executes a exclusive STR instruction for 8 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S \return 0 Function succeeded
S \return 1 Function failed
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __STREXB(value, ptr) __strex(value, ptr)
S#else
S #define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
S#endif
S
S
S/**
S \brief STR Exclusive (16 bit)
S \details Executes a exclusive STR instruction for 16 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S \return 0 Function succeeded
S \return 1 Function failed
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __STREXH(value, ptr) __strex(value, ptr)
S#else
S #define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
S#endif
S
S
S/**
S \brief STR Exclusive (32 bit)
S \details Executes a exclusive STR instruction for 32 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S \return 0 Function succeeded
S \return 1 Function failed
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __STREXW(value, ptr) __strex(value, ptr)
S#else
S #define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
S#endif
S
S
S/**
S \brief Remove the exclusive lock
S \details Removes the exclusive lock which is created by LDREX.
S */
S#define __CLREX __clrex
S
S
S/**
S \brief Signed Saturate
S \details Saturates a signed value.
S \param [in] value Value to be saturated
S \param [in] sat Bit position to saturate to (1..32)
S \return Saturated value
S */
S#define __SSAT __ssat
S
S
S/**
S \brief Unsigned Saturate
S \details Saturates an unsigned value.
S \param [in] value Value to be saturated
S \param [in] sat Bit position to saturate to (0..31)
S \return Saturated value
S */
S#define __USAT __usat
S
S
S/**
S \brief Rotate Right with Extend (32 bit)
S \details Moves each bit of a bitstring right by one bit.
S The carry input is shifted in at the left end of the bitstring.
S \param [in] value Value to rotate
S \return Rotated value
S */
S#ifndef __NO_EMBEDDED_ASM
S__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value)
S{
S rrx r0, r0
S bx lr
S}
S#endif
S
S
S/**
S \brief LDRT Unprivileged (8 bit)
S \details Executes a Unprivileged LDRT instruction for 8 bit value.
S \param [in] ptr Pointer to data
S \return value of type uint8_t at (*ptr)
S */
S#define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr))
S
S
S/**
S \brief LDRT Unprivileged (16 bit)
S \details Executes a Unprivileged LDRT instruction for 16 bit values.
S \param [in] ptr Pointer to data
S \return value of type uint16_t at (*ptr)
S */
S#define __LDRHT(ptr) ((uint16_t) __ldrt(ptr))
S
S
S/**
S \brief LDRT Unprivileged (32 bit)
S \details Executes a Unprivileged LDRT instruction for 32 bit values.
S \param [in] ptr Pointer to data
S \return value of type uint32_t at (*ptr)
S */
S#define __LDRT(ptr) ((uint32_t ) __ldrt(ptr))
S
S
S/**
S \brief STRT Unprivileged (8 bit)
S \details Executes a Unprivileged STRT instruction for 8 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S */
S#define __STRBT(value, ptr) __strt(value, ptr)
S
S
S/**
S \brief STRT Unprivileged (16 bit)
S \details Executes a Unprivileged STRT instruction for 16 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S */
S#define __STRHT(value, ptr) __strt(value, ptr)
S
S
S/**
S \brief STRT Unprivileged (32 bit)
S \details Executes a Unprivileged STRT instruction for 32 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S */
S#define __STRT(value, ptr) __strt(value, ptr)
S
N#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
X#else
N
N/**
N \brief Signed Saturate
N \details Saturates a signed value.
N \param [in] value Value to be saturated
N \param [in] sat Bit position to saturate to (1..32)
N \return Saturated value
N */
N__attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
X__attribute__((always_inline)) static __inline int32_t __SSAT(int32_t val, uint32_t sat)
N{
N if ((sat >= 1U) && (sat <= 32U))
N {
N const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
N const int32_t min = -1 - max ;
N if (val > max)
N {
N return max;
N }
N else if (val < min)
N {
N return min;
N }
N }
N return val;
N}
N
N/**
N \brief Unsigned Saturate
N \details Saturates an unsigned value.
N \param [in] value Value to be saturated
N \param [in] sat Bit position to saturate to (0..31)
N \return Saturated value
N */
N__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
X__attribute__((always_inline)) static __inline uint32_t __USAT(int32_t val, uint32_t sat)
N{
N if (sat <= 31U)
N {
N const uint32_t max = ((1U << sat) - 1U);
N if (val > (int32_t)max)
N {
N return max;
N }
N else if (val < 0)
N {
N return 0U;
N }
N }
N return (uint32_t)val;
N}
N
N#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
X#endif
N
N/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
N
N
N/* ################### Compiler specific Intrinsics ########################### */
N/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
N Access to dedicated SIMD instructions
N @{
N*/
N
N#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
X#if ((0L && (__ARM_ARCH_7EM__ == 1)) )
S
S#define __SADD8 __sadd8
S#define __QADD8 __qadd8
S#define __SHADD8 __shadd8
S#define __UADD8 __uadd8
S#define __UQADD8 __uqadd8
S#define __UHADD8 __uhadd8
S#define __SSUB8 __ssub8
S#define __QSUB8 __qsub8
S#define __SHSUB8 __shsub8
S#define __USUB8 __usub8
S#define __UQSUB8 __uqsub8
S#define __UHSUB8 __uhsub8
S#define __SADD16 __sadd16
S#define __QADD16 __qadd16
S#define __SHADD16 __shadd16
S#define __UADD16 __uadd16
S#define __UQADD16 __uqadd16
S#define __UHADD16 __uhadd16
S#define __SSUB16 __ssub16
S#define __QSUB16 __qsub16
S#define __SHSUB16 __shsub16
S#define __USUB16 __usub16
S#define __UQSUB16 __uqsub16
S#define __UHSUB16 __uhsub16
S#define __SASX __sasx
S#define __QASX __qasx
S#define __SHASX __shasx
S#define __UASX __uasx
S#define __UQASX __uqasx
S#define __UHASX __uhasx
S#define __SSAX __ssax
S#define __QSAX __qsax
S#define __SHSAX __shsax
S#define __USAX __usax
S#define __UQSAX __uqsax
S#define __UHSAX __uhsax
S#define __USAD8 __usad8
S#define __USADA8 __usada8
S#define __SSAT16 __ssat16
S#define __USAT16 __usat16
S#define __UXTB16 __uxtb16
S#define __UXTAB16 __uxtab16
S#define __SXTB16 __sxtb16
S#define __SXTAB16 __sxtab16
S#define __SMUAD __smuad
S#define __SMUADX __smuadx
S#define __SMLAD __smlad
S#define __SMLADX __smladx
S#define __SMLALD __smlald
S#define __SMLALDX __smlaldx
S#define __SMUSD __smusd
S#define __SMUSDX __smusdx
S#define __SMLSD __smlsd
S#define __SMLSDX __smlsdx
S#define __SMLSLD __smlsld
S#define __SMLSLDX __smlsldx
S#define __SEL __sel
S#define __QADD __qadd
S#define __QSUB __qsub
S
S#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
S ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
X#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
S
S#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
S ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
X#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
S
S#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
S ((int64_t)(ARG3) << 32U) ) >> 32U))
X#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + ((int64_t)(ARG3) << 32U) ) >> 32U))
S
N#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
N/*@} end of group CMSIS_SIMD_intrinsics */
N
N
N#endif /* __CMSIS_ARMCC_H */
L 35 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\cmsis_compiler.h" 2
N
N
N/*
N * Arm Compiler 6.6 LTM (armclang)
N */
N#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) && (__ARMCC_VERSION < 6100100)
X#elif 1L && (5060750 >= 6010050) && (5060750 < 6100100)
S #include "cmsis_armclang_ltm.h"
S
S /*
S * Arm Compiler above 6.10.1 (armclang)
S */
S#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100)
S #include "cmsis_armclang.h"
S
S
S/*
S * GNU Compiler
S */
S#elif defined ( __GNUC__ )
S #include "cmsis_gcc.h"
S
S
S/*
S * IAR Compiler
S */
S#elif defined ( __ICCARM__ )
S #include <cmsis_iccarm.h>
S
S
S/*
S * TI Arm Compiler
S */
S#elif defined ( __TI_ARM__ )
S #include <cmsis_ccs.h>
S
S #ifndef __ASM
S #define __ASM __asm
S #endif
S #ifndef __INLINE
S #define __INLINE inline
S #endif
S #ifndef __STATIC_INLINE
S #define __STATIC_INLINE static inline
S #endif
S #ifndef __STATIC_FORCEINLINE
S #define __STATIC_FORCEINLINE __STATIC_INLINE
S #endif
S #ifndef __NO_RETURN
S #define __NO_RETURN __attribute__((noreturn))
S #endif
S #ifndef __USED
S #define __USED __attribute__((used))
S #endif
S #ifndef __WEAK
S #define __WEAK __attribute__((weak))
S #endif
S #ifndef __PACKED
S #define __PACKED __attribute__((packed))
S #endif
S #ifndef __PACKED_STRUCT
S #define __PACKED_STRUCT struct __attribute__((packed))
S #endif
S #ifndef __PACKED_UNION
S #define __PACKED_UNION union __attribute__((packed))
S #endif
S #ifndef __UNALIGNED_UINT32 /* deprecated */
S struct __attribute__((packed)) T_UINT32 { uint32_t v; };
S #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
S #endif
S #ifndef __UNALIGNED_UINT16_WRITE
S __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
S #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void*)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT16_READ
S __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
S #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __UNALIGNED_UINT32_WRITE
S __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
S #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT32_READ
S __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
S #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __ALIGNED
S #define __ALIGNED(x) __attribute__((aligned(x)))
S #endif
S #ifndef __RESTRICT
S #define __RESTRICT __restrict
S #endif
S
S
S/*
S * TASKING Compiler
S */
S#elif defined ( __TASKING__ )
S /*
S * The CMSIS functions have been implemented as intrinsics in the compiler.
S * Please use "carm -?i" to get an up to date list of all intrinsics,
S * Including the CMSIS ones.
S */
S
S #ifndef __ASM
S #define __ASM __asm
S #endif
S #ifndef __INLINE
S #define __INLINE inline
S #endif
S #ifndef __STATIC_INLINE
S #define __STATIC_INLINE static inline
S #endif
S #ifndef __STATIC_FORCEINLINE
S #define __STATIC_FORCEINLINE __STATIC_INLINE
S #endif
S #ifndef __NO_RETURN
S #define __NO_RETURN __attribute__((noreturn))
S #endif
S #ifndef __USED
S #define __USED __attribute__((used))
S #endif
S #ifndef __WEAK
S #define __WEAK __attribute__((weak))
S #endif
S #ifndef __PACKED
S #define __PACKED __packed__
S #endif
S #ifndef __PACKED_STRUCT
S #define __PACKED_STRUCT struct __packed__
S #endif
S #ifndef __PACKED_UNION
S #define __PACKED_UNION union __packed__
S #endif
S #ifndef __UNALIGNED_UINT32 /* deprecated */
S struct __packed__ T_UINT32 { uint32_t v; };
S #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
S #endif
S #ifndef __UNALIGNED_UINT16_WRITE
S __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
S #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT16_READ
S __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
S #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __UNALIGNED_UINT32_WRITE
S __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
S #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT32_READ
S __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
S #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __ALIGNED
S #define __ALIGNED(x) __align(x)
S #endif
S #ifndef __RESTRICT
S #warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
S #define __RESTRICT
S #endif
S
S
S/*
S * COSMIC Compiler
S */
S#elif defined ( __CSMC__ )
S #include <cmsis_csm.h>
S
S #ifndef __ASM
S #define __ASM _asm
S #endif
S #ifndef __INLINE
S #define __INLINE inline
S #endif
S #ifndef __STATIC_INLINE
S #define __STATIC_INLINE static inline
S #endif
S #ifndef __STATIC_FORCEINLINE
S #define __STATIC_FORCEINLINE __STATIC_INLINE
S #endif
S #ifndef __NO_RETURN
S // NO RETURN is automatically detected hence no warning here
S #define __NO_RETURN
S #endif
S #ifndef __USED
S #warning No compiler specific solution for __USED. __USED is ignored.
S #define __USED
S #endif
S #ifndef __WEAK
S #define __WEAK __weak
S #endif
S #ifndef __PACKED
S #define __PACKED @packed
S #endif
S #ifndef __PACKED_STRUCT
S #define __PACKED_STRUCT @packed struct
S #endif
S #ifndef __PACKED_UNION
S #define __PACKED_UNION @packed union
S #endif
S #ifndef __UNALIGNED_UINT32 /* deprecated */
S @packed struct T_UINT32 { uint32_t v; };
S #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
S #endif
S #ifndef __UNALIGNED_UINT16_WRITE
S __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
S #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT16_READ
S __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
S #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __UNALIGNED_UINT32_WRITE
S __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
S #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT32_READ
S __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
S #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __ALIGNED
S #warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored.
S #define __ALIGNED(x)
S #endif
S #ifndef __RESTRICT
S #warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
S #define __RESTRICT
S #endif
S
S
S#else
S #error Unknown compiler.
N#endif
N
N
N#endif /* __CMSIS_COMPILER_H */
N
L 116 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\core_cm0.h" 2
N
N
N#ifdef __cplusplus
S}
N#endif
N
N#endif /* __CORE_CM0_H_GENERIC */
N
N#ifndef __CMSIS_GENERIC
N
N#ifndef __CORE_CM0_H_DEPENDANT
N#define __CORE_CM0_H_DEPENDANT
N
N#ifdef __cplusplus
S extern "C" {
N#endif
N
N/* check device defines and use defaults */
N#if defined __CHECK_DEVICE_DEFINES
X#if 0L
S #ifndef __CM0_REV
S #define __CM0_REV 0x0000U
S #warning "__CM0_REV not defined in device header file; using default!"
S #endif
S
S #ifndef __NVIC_PRIO_BITS
S #define __NVIC_PRIO_BITS 2U
S #warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
S #endif
S
S #ifndef __Vendor_SysTickConfig
S #define __Vendor_SysTickConfig 0U
S #warning "__Vendor_SysTickConfig not defined in device header file; using default!"
S #endif
N#endif
N
N/* IO definitions (access restrictions to peripheral registers) */
N/**
N \defgroup CMSIS_glob_defs CMSIS Global Defines
N
N <strong>IO Type Qualifiers</strong> are used
N \li to specify the access to peripheral variables.
N \li for automatic generation of peripheral register debug information.
N*/
N#ifdef __cplusplus
S #define __I volatile /*!< Defines 'read only' permissions */
N#else
N #define __I volatile const /*!< Defines 'read only' permissions */
N#endif
N#define __O volatile /*!< Defines 'write only' permissions */
N#define __IO volatile /*!< Defines 'read / write' permissions */
N
N/* following defines should be used for structure members */
N#define __IM volatile const /*! Defines 'read only' structure member permissions */
N#define __OM volatile /*! Defines 'write only' structure member permissions */
N#define __IOM volatile /*! Defines 'read / write' structure member permissions */
N
N/*@} end of group Cortex_M0 */
N
N
N
N/*******************************************************************************
N * Register Abstraction
N Core Register contain:
N - Core Register
N - Core NVIC Register
N - Core SCB Register
N - Core SysTick Register
N ******************************************************************************/
N/**
N \defgroup CMSIS_core_register Defines and Type Definitions
N \brief Type definitions and defines for Cortex-M processor based devices.
N*/
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_CORE Status and Control Registers
N \brief Core Register type definitions.
N @{
N */
N
N/**
N \brief Union type to access the Application Program Status Register (APSR).
N */
Ntypedef union
N{
N struct
N {
N uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
N uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
N uint32_t C:1; /*!< bit: 29 Carry condition code flag */
N uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
N uint32_t N:1; /*!< bit: 31 Negative condition code flag */
N } b; /*!< Structure used for bit access */
N uint32_t w; /*!< Type used for word access */
N} APSR_Type;
N
N/* APSR Register Definitions */
N#define APSR_N_Pos 31U /*!< APSR: N Position */
N#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
N
N#define APSR_Z_Pos 30U /*!< APSR: Z Position */
N#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
N
N#define APSR_C_Pos 29U /*!< APSR: C Position */
N#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
N
N#define APSR_V_Pos 28U /*!< APSR: V Position */
N#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
N
N
N/**
N \brief Union type to access the Interrupt Program Status Register (IPSR).
N */
Ntypedef union
N{
N struct
N {
N uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
N uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
N } b; /*!< Structure used for bit access */
N uint32_t w; /*!< Type used for word access */
N} IPSR_Type;
N
N/* IPSR Register Definitions */
N#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
N#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
N
N
N/**
N \brief Union type to access the Special-Purpose Program Status Registers (xPSR).
N */
Ntypedef union
N{
N struct
N {
N uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
N uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
N uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
N uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
N uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
N uint32_t C:1; /*!< bit: 29 Carry condition code flag */
N uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
N uint32_t N:1; /*!< bit: 31 Negative condition code flag */
N } b; /*!< Structure used for bit access */
N uint32_t w; /*!< Type used for word access */
N} xPSR_Type;
N
N/* xPSR Register Definitions */
N#define xPSR_N_Pos 31U /*!< xPSR: N Position */
N#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
N
N#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
N#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
N
N#define xPSR_C_Pos 29U /*!< xPSR: C Position */
N#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
N
N#define xPSR_V_Pos 28U /*!< xPSR: V Position */
N#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
N
N#define xPSR_T_Pos 24U /*!< xPSR: T Position */
N#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
N
N#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
N#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
N
N
N/**
N \brief Union type to access the Control Registers (CONTROL).
N */
Ntypedef union
N{
N struct
N {
N uint32_t _reserved0:1; /*!< bit: 0 Reserved */
N uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
N uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
N } b; /*!< Structure used for bit access */
N uint32_t w; /*!< Type used for word access */
N} CONTROL_Type;
N
N/* CONTROL Register Definitions */
N#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
N#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
N
N/*@} end of group CMSIS_CORE */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
N \brief Type definitions for the NVIC Registers
N @{
N */
N
N/**
N \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
N */
Ntypedef struct
N{
N __IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
X volatile uint32_t ISER[1U];
N uint32_t RESERVED0[31U];
N __IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
X volatile uint32_t ICER[1U];
N uint32_t RESERVED1[31U];
N __IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
X volatile uint32_t ISPR[1U];
N uint32_t RESERVED2[31U];
N __IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
X volatile uint32_t ICPR[1U];
N uint32_t RESERVED3[31U];
N uint32_t RESERVED4[64U];
N __IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
X volatile uint32_t IP[8U];
N} NVIC_Type;
N
N/*@} end of group CMSIS_NVIC */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_SCB System Control Block (SCB)
N \brief Type definitions for the System Control Block Registers
N @{
N */
N
N/**
N \brief Structure type to access the System Control Block (SCB).
N */
Ntypedef struct
N{
N __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
X volatile const uint32_t CPUID;
N __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
X volatile uint32_t ICSR;
N uint32_t RESERVED0;
N __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
X volatile uint32_t AIRCR;
N __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
X volatile uint32_t SCR;
N __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
X volatile uint32_t CCR;
N uint32_t RESERVED1;
N __IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
X volatile uint32_t SHP[2U];
N __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
X volatile uint32_t SHCSR;
N} SCB_Type;
N
N/* SCB CPUID Register Definitions */
N#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
N#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
N
N#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
N#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
N
N#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
N#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
N
N#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
N#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
N
N#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
N#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
N
N/* SCB Interrupt Control State Register Definitions */
N#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
N#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
N
N#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
N#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
N
N#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
N#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
N
N#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
N#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
N
N#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
N#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
N
N#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
N#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
N
N#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
N#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
N
N#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
N#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
N
N#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
N#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
N
N/* SCB Application Interrupt and Reset Control Register Definitions */
N#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
N#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
N
N#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
N#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
N
N#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
N#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
N
N#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
N#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
N
N#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
N#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
N
N/* SCB System Control Register Definitions */
N#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
N#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
N
N#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
N#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
N
N#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
N#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
N
N/* SCB Configuration Control Register Definitions */
N#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
N#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
N
N#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
N#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
N
N/* SCB System Handler Control and State Register Definitions */
N#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
N#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
N
N/*@} end of group CMSIS_SCB */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_SysTick System Tick Timer (SysTick)
N \brief Type definitions for the System Timer Registers.
N @{
N */
N
N/**
N \brief Structure type to access the System Timer (SysTick).
N */
Ntypedef struct
N{
N __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
X volatile uint32_t CTRL;
N __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
X volatile uint32_t LOAD;
N __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
X volatile uint32_t VAL;
N __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
X volatile const uint32_t CALIB;
N} SysTick_Type;
N
N/* SysTick Control / Status Register Definitions */
N#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
N#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
N
N#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
N#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
N
N#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
N#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
N
N#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
N#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
N
N/* SysTick Reload Register Definitions */
N#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
N#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
N
N/* SysTick Current Register Definitions */
N#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
N#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
N
N/* SysTick Calibration Register Definitions */
N#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
N#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
N
N#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
N#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
N
N#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
N#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
N
N/*@} end of group CMSIS_SysTick */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
N \brief Cortex-M0 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
N Therefore they are not covered by the Cortex-M0 header file.
N @{
N */
N/*@} end of group CMSIS_CoreDebug */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_core_bitfield Core register bit field macros
N \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
N @{
N */
N
N/**
N \brief Mask and shift a bit field value for use in a register bit range.
N \param[in] field Name of the register bit field.
N \param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
N \return Masked and shifted value.
N*/
N#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
N
N/**
N \brief Mask and shift a register value to extract a bit filed value.
N \param[in] field Name of the register bit field.
N \param[in] value Value of register. This parameter is interpreted as an uint32_t type.
N \return Masked and shifted bit field value.
N*/
N#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
N
N/*@} end of group CMSIS_core_bitfield */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_core_base Core Definitions
N \brief Definitions for base addresses, unions, and structures.
N @{
N */
N
N/* Memory mapping of Core Hardware */
N#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
N#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
N#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
N#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
N
N#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
N#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
N#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
N
N
N/*@} */
N
N
N
N/*******************************************************************************
N * Hardware Abstraction Layer
N Core Function Interface contains:
N - Core NVIC Functions
N - Core SysTick Functions
N - Core Register Access Functions
N ******************************************************************************/
N/**
N \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
N*/
N
N
N
N/* ########################## NVIC functions #################################### */
N/**
N \ingroup CMSIS_Core_FunctionInterface
N \defgroup CMSIS_Core_NVICFunctions NVIC Functions
N \brief Functions that manage interrupts and exceptions via the NVIC.
N @{
N */
N
N#ifdef CMSIS_NVIC_VIRTUAL
S #ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
S #define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
S #endif
S #include CMSIS_NVIC_VIRTUAL_HEADER_FILE
N#else
N #define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
N #define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
N #define NVIC_EnableIRQ __NVIC_EnableIRQ
N #define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
N #define NVIC_DisableIRQ __NVIC_DisableIRQ
N #define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
N #define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
N #define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
N/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M0 */
N #define NVIC_SetPriority __NVIC_SetPriority
N #define NVIC_GetPriority __NVIC_GetPriority
N #define NVIC_SystemReset __NVIC_SystemReset
N#endif /* CMSIS_NVIC_VIRTUAL */
N
N#ifdef CMSIS_VECTAB_VIRTUAL
S #ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
S #define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
S #endif
S #include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
N#else
N #define NVIC_SetVector __NVIC_SetVector
N #define NVIC_GetVector __NVIC_GetVector
N#endif /* (CMSIS_VECTAB_VIRTUAL) */
N
N#define NVIC_USER_IRQ_OFFSET 16
N
N
N/* The following EXC_RETURN values are saved the LR on exception entry */
N#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
N#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
N#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
N
N
N/* Interrupt Priorities are WORD accessible only under Armv6-M */
N/* The following MACROS handle generation of the register offset and byte masks */
N#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
N#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
N#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
N
N#define __NVIC_SetPriorityGrouping(X) (void)(X)
N#define __NVIC_GetPriorityGrouping() (0U)
N
N/**
N \brief Enable Interrupt
N \details Enables a device specific interrupt in the NVIC interrupt controller.
N \param [in] IRQn Device specific interrupt number.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
Xstatic __inline void __NVIC_EnableIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
X ((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
N }
N}
N
N
N/**
N \brief Get Interrupt Enable status
N \details Returns a device specific interrupt enable status from the NVIC interrupt controller.
N \param [in] IRQn Device specific interrupt number.
N \return 0 Interrupt is not enabled.
N \return 1 Interrupt is enabled.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
Xstatic __inline uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
X return((uint32_t)(((((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
N }
N else
N {
N return(0U);
N }
N}
N
N
N/**
N \brief Disable Interrupt
N \details Disables a device specific interrupt in the NVIC interrupt controller.
N \param [in] IRQn Device specific interrupt number.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
Xstatic __inline void __NVIC_DisableIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
X ((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
N __DSB();
X do { __schedule_barrier(); __dsb(0xF); __schedule_barrier(); } while (0U);
N __ISB();
X do { __schedule_barrier(); __isb(0xF); __schedule_barrier(); } while (0U);
N }
N}
N
N
N/**
N \brief Get Pending Interrupt
N \details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
N \param [in] IRQn Device specific interrupt number.
N \return 0 Interrupt status is not pending.
N \return 1 Interrupt status is pending.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
Xstatic __inline uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
X return((uint32_t)(((((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
N }
N else
N {
N return(0U);
N }
N}
N
N
N/**
N \brief Set Pending Interrupt
N \details Sets the pending bit of a device specific interrupt in the NVIC pending register.
N \param [in] IRQn Device specific interrupt number.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
Xstatic __inline void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
X ((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
N }
N}
N
N
N/**
N \brief Clear Pending Interrupt
N \details Clears the pending bit of a device specific interrupt in the NVIC pending register.
N \param [in] IRQn Device specific interrupt number.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
Xstatic __inline void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
X ((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
N }
N}
N
N
N/**
N \brief Set Interrupt Priority
N \details Sets the priority of a device specific interrupt or a processor exception.
N The interrupt number can be positive to specify a device specific interrupt,
N or negative to specify a processor exception.
N \param [in] IRQn Interrupt number.
N \param [in] priority Priority to set.
N \note The priority cannot be set for every processor exception.
N */
N__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
Xstatic __inline void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
X ((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->IP[( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )] = ((uint32_t)(((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->IP[( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )] & ~(0xFFUL << ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL))) |
N (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
X (((priority << (8U - 2U)) & (uint32_t)0xFFUL) << ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)));
N }
N else
N {
N SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
X ((SCB_Type *) ((0xE000E000UL) + 0x0D00UL) )->SHP[( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )] = ((uint32_t)(((SCB_Type *) ((0xE000E000UL) + 0x0D00UL) )->SHP[( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )] & ~(0xFFUL << ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL))) |
N (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
X (((priority << (8U - 2U)) & (uint32_t)0xFFUL) << ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)));
N }
N}
N
N
N/**
N \brief Get Interrupt Priority
N \details Reads the priority of a device specific interrupt or a processor exception.
N The interrupt number can be positive to specify a device specific interrupt,
N or negative to specify a processor exception.
N \param [in] IRQn Interrupt number.
N \return Interrupt Priority.
N Value is aligned automatically to the implemented priority bits of the microcontroller.
N */
N__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
Xstatic __inline uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
N{
N
N if ((int32_t)(IRQn) >= 0)
N {
N return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
X return((uint32_t)(((((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->IP[ ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )] >> ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL) ) & (uint32_t)0xFFUL) >> (8U - 2U)));
N }
N else
N {
N return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
X return((uint32_t)(((((SCB_Type *) ((0xE000E000UL) + 0x0D00UL) )->SHP[( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )] >> ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL) ) & (uint32_t)0xFFUL) >> (8U - 2U)));
N }
N}
N
N
N/**
N \brief Encode Priority
N \details Encodes the priority for an interrupt with the given priority group,
N preemptive priority value, and subpriority value.
N In case of a conflict between priority grouping and available
N priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
N \param [in] PriorityGroup Used priority group.
N \param [in] PreemptPriority Preemptive priority value (starting from 0).
N \param [in] SubPriority Subpriority value (starting from 0).
N \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
N */
N__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
Xstatic __inline uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
N{
N uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
N uint32_t PreemptPriorityBits;
N uint32_t SubPriorityBits;
N
N PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
X PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(2U)) ? (uint32_t)(2U) : (uint32_t)(7UL - PriorityGroupTmp);
N SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
X SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(2U)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(2U));
N
N return (
N ((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
N ((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
N );
N}
N
N
N/**
N \brief Decode Priority
N \details Decodes an interrupt priority value with a given priority group to
N preemptive priority value and subpriority value.
N In case of a conflict between priority grouping and available
N priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
N \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
N \param [in] PriorityGroup Used priority group.
N \param [out] pPreemptPriority Preemptive priority value (starting from 0).
N \param [out] pSubPriority Subpriority value (starting from 0).
N */
N__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
Xstatic __inline void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
N{
N uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
N uint32_t PreemptPriorityBits;
N uint32_t SubPriorityBits;
N
N PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
X PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(2U)) ? (uint32_t)(2U) : (uint32_t)(7UL - PriorityGroupTmp);
N SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
X SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(2U)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(2U));
N
N *pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
N *pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
N}
N
N
N
N/**
N \brief Set Interrupt Vector
N \details Sets an interrupt vector in SRAM based interrupt vector table.
N The interrupt number can be positive to specify a device specific interrupt,
N or negative to specify a processor exception.
N Address 0 must be mapped to SRAM.
N \param [in] IRQn Interrupt number
N \param [in] vector Address of interrupt handler function
N */
N__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
Xstatic __inline void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
N{
N uint32_t vectors = 0x0U;
N (* (int *) (vectors + ((int32_t)IRQn + NVIC_USER_IRQ_OFFSET) * 4)) = vector;
X (* (int *) (vectors + ((int32_t)IRQn + 16) * 4)) = vector;
N}
N
N
N/**
N \brief Get Interrupt Vector
N \details Reads an interrupt vector from interrupt vector table.
N The interrupt number can be positive to specify a device specific interrupt,
N or negative to specify a processor exception.
N \param [in] IRQn Interrupt number.
N \return Address of interrupt handler function
N */
N__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
Xstatic __inline uint32_t __NVIC_GetVector(IRQn_Type IRQn)
N{
N uint32_t vectors = 0x0U;
N return (uint32_t)(* (int *) (vectors + ((int32_t)IRQn + NVIC_USER_IRQ_OFFSET) * 4));
X return (uint32_t)(* (int *) (vectors + ((int32_t)IRQn + 16) * 4));
N}
N
N
N/**
N \brief System Reset
N \details Initiates a system reset request to reset the MCU.
N */
N__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
X__declspec(noreturn) static __inline void __NVIC_SystemReset(void)
N{
N __DSB(); /* Ensure all outstanding memory accesses included
X do { __schedule_barrier(); __dsb(0xF); __schedule_barrier(); } while (0U);
N buffered write are completed before reset */
N SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
X ((SCB_Type *) ((0xE000E000UL) + 0x0D00UL) )->AIRCR = ((0x5FAUL << 16U) |
N SCB_AIRCR_SYSRESETREQ_Msk);
X (1UL << 2U));
N __DSB(); /* Ensure completion of memory access */
X do { __schedule_barrier(); __dsb(0xF); __schedule_barrier(); } while (0U);
N
N for(;;) /* wait until reset */
N {
N __NOP();
X __nop();
N }
N}
N
N/*@} end of CMSIS_Core_NVICFunctions */
N
N
N/* ########################## FPU functions #################################### */
N/**
N \ingroup CMSIS_Core_FunctionInterface
N \defgroup CMSIS_Core_FpuFunctions FPU Functions
N \brief Function that provides FPU type.
N @{
N */
N
N/**
N \brief get FPU type
N \details returns the FPU type
N \returns
N - \b 0: No FPU
N - \b 1: Single precision FPU
N - \b 2: Double + Single precision FPU
N */
N__STATIC_INLINE uint32_t SCB_GetFPUType(void)
Xstatic __inline uint32_t SCB_GetFPUType(void)
N{
N return 0U; /* No FPU */
N}
N
N
N/*@} end of CMSIS_Core_FpuFunctions */
N
N
N
N/* ################################## SysTick function ############################################ */
N/**
N \ingroup CMSIS_Core_FunctionInterface
N \defgroup CMSIS_Core_SysTickFunctions SysTick Functions
N \brief Functions that configure the System.
N @{
N */
N
N#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
X#if 1L && (0U == 0U)
N
N/**
N \brief System Tick Configuration
N \details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
N Counter is in free running mode to generate periodic interrupts.
N \param [in] ticks Number of ticks between two interrupts.
N \return 0 Function succeeded.
N \return 1 Function failed.
N \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
N function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
N must contain a vendor-specific implementation of this function.
N */
N__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
Xstatic __inline uint32_t SysTick_Config(uint32_t ticks)
N{
N if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
X if ((ticks - 1UL) > (0xFFFFFFUL ))
N {
N return (1UL); /* Reload value impossible */
N }
N
N SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
X ((SysTick_Type *) ((0xE000E000UL) + 0x0010UL) )->LOAD = (uint32_t)(ticks - 1UL);
N NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
X __NVIC_SetPriority (SysTick_IRQn, (1UL << 2U) - 1UL);
N SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
X ((SysTick_Type *) ((0xE000E000UL) + 0x0010UL) )->VAL = 0UL;
N SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
X ((SysTick_Type *) ((0xE000E000UL) + 0x0010UL) )->CTRL = (1UL << 2U) |
N SysTick_CTRL_TICKINT_Msk |
X (1UL << 1U) |
N SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
X (1UL );
N return (0UL); /* Function successful */
N}
N
N#endif
N
N/*@} end of CMSIS_Core_SysTickFunctions */
N
N
N
N
N#ifdef __cplusplus
S}
N#endif
N
N#endif /* __CORE_CM0_H_DEPENDANT */
N
N#endif /* __CMSIS_GENERIC */
L 129 "..\src\sdk\include\M0\ArmCM0.h" 2
N#include "system_ARMCM0.h" /* System Header */
L 1 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\Device\ARM\ARMCM0\Include\system_ARMCM0.h" 1
N/**************************************************************************//**
N * @file system_ARMCM0.h
N * @brief CMSIS Device System Header File for
N * ARMCM0 Device
N * @version V5.3.1
N * @date 09. July 2018
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#ifndef SYSTEM_ARMCM0_H
N#define SYSTEM_ARMCM0_H
N
N#ifdef __cplusplus
Sextern "C" {
N#endif
N
Nextern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Clock) */
N
N
N/**
N \brief Setup the microcontroller system.
N
N Initialize the System and update the SystemCoreClock variable.
N */
Nextern void SystemInit (void);
N
N
N/**
N \brief Update SystemCoreClock variable.
N
N Updates the SystemCoreClock with current core Clock retrieved from cpu registers.
N */
Nextern void SystemCoreClockUpdate (void);
N
N#ifdef __cplusplus
S}
N#endif
N
N#endif /* SYSTEM_ARMCM0_H */
L 130 "..\src\sdk\include\M0\ArmCM0.h" 2
N
N/*----------------------------------------------------------------------------
N Define clocks
N *----------------------------------------------------------------------------*/
N#define XTAL (500000000UL) /* Oscillator frequency */
N
N#if FPGA_MODE
X#if 0
S#define SYSTEM_CLOCK (33300000U)
N#else
N/* 浣跨敤澶栭儴鏅舵尟鏃<E5B09F>,绯荤粺鏃堕挓鍙<E68C93>兘鏄<E58598>100M,涓嶄娇鐢ㄥ<E990A2>閮ㄦ櫠鎸<E6ABA0>椂,绯荤粺鏃堕挓鍙<E68C93>互鏄<E4BA92>100M/80M*/
N#if EXTERN_24M
X#if 0
S#define SYSTEM_CLOCK (100000000U)
N#else
N#if CPU_CLK_100M
X#if 0
S#define SYSTEM_CLOCK (100000000U)
N#else
N#define SYSTEM_CLOCK (80000000U)
N#endif
N#endif
N#endif
N
N/* -------- End of section using anonymous unions and disabling warnings -------- */
N#if defined (__CC_ARM)
X#if 1L
N#pragma pop
N#elif defined (__ICCARM__)
X#elif 0L
S/* leave anonymous unions enabled */
S#elif (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
S#pragma clang diagnostic pop
S#elif defined (__GNUC__)
S/* anonymous unions are enabled by default */
S#elif defined (__TMS470__)
S/* anonymous unions are enabled by default */
S#elif defined (__TASKING__)
S#pragma warning restore
S#elif defined (__CSMC__)
S/* anonymous unions are enabled by default */
S#else
S#warning Not supported compiler type
N#endif
N
N/* In HS mode and when the DMA is used, all variables and data structures dealing
N with the DMA during the transaction process should be 4-bytes aligned */
N#define DMA_WORD_ALIGN_EN
N#ifdef DMA_WORD_ALIGN_EN
N#if defined (__GNUC__) /* GNU Compiler */
X#if 1L
N#define __ALIGN_END __attribute__ ((aligned (4)))
N#define __ALIGN_BEGIN
N#else
S#define __ALIGN_END
S#if defined (__CC_ARM) /* ARM Compiler */
S#define __ALIGN_BEGIN __align(4)
S#elif defined (__ICCARM__) /* IAR Compiler */
S#define __ALIGN_BEGIN
S#elif defined (__TASKING__) /* TASKING Compiler */
S#define __ALIGN_BEGIN __align(4)
S#endif /* __CC_ARM */
N#endif /* __GNUC__ */
N#else
S
S#define __ALIGN_BEGIN
S#define __ALIGN_END
S
S#define __ALIGN_END_1 __attribute__ ((aligned (1)))
N#endif /* DMA_WORD_ALIGN_EN */
N
N/* __packed keyword used to decrease the data type alignment to 1-byte */
N#if defined (__CC_ARM) /* ARM Compiler */
X#if 1L
N#define __packed __packed
N#elif defined (__ICCARM__) /* IAR Compiler */
X#elif 0L
S#define __packed __packed
S#elif defined ( __GNUC__ ) /* GNU Compiler */
S#define __packed __attribute__ ((__packed__))
S#define __weak __attribute__((weak))
S#elif defined (__TASKING__) /* TASKING Compiler */
S#define __packed __unaligned
N#endif /* __CC_ARM */
N
N#ifdef __cplusplus
S}
N#endif
N
N#endif /* ARMCM0_H */
L 13 "..\src\board\board.c" 2
N
Nvoid board_Init(void)
N{
N hal_system_init(SYSTEM_CLOCK);
X hal_system_init((80000000U));
N hal_system_enable_systick(1);
N#if !EDA_MODE
X#if !0
N hal_system_init_console(115200);
N#endif
N#if defined(ISP_568) || defined(ISP_368)
X#if 1L || 0L
N /* 浠嶦FUSE璇诲彇DPHY鏍″噯鍊煎苟璁剧疆 */
N hal_system_set_phy_calibration(true);
X hal_system_set_phy_calibration(1);
N#endif
N}
N