This repository has been archived on 2023-03-16. You can view files and clone it, but cannot push or open issues or pull requests.
SAMSUNG_S21_FHD_ISP568_BC-XGD/project/Listings/main.lst

9025 lines
362 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

L 1 "..\src\app\main.c"
N#include <stdio.h>
L 1 "C:\Keil_v5\ARM\ARMCC\Bin\..\include\stdio.h" 1
N/* stdio.h: ANSI 'C' (X3J11 Oct 88) library header, section 4.9 */
N/* Copyright (C) Codemist Ltd., 1988-1993 */
N/* Copyright 1991-1998 ARM Limited. All rights reserved. */
N
N/*
N * RCS $Revision$
N * Checkin $Date$
N * Revising $Author: sdouglas $
N */
N
N/*
N * stdio.h declares two types, several macros, and many functions for
N * performing input and output. For a discussion on Streams and Files
N * refer to sections 4.9.2 and 4.9.3 in the above ANSI draft, or to a
N * modern textbook on C.
N */
N
N#ifndef __stdio_h
N#define __stdio_h
N#define __ARMCLIB_VERSION 5060037
N
N/*
N * Depending on compiler version __int64 or __INT64_TYPE__ should be defined.
N */
N#ifndef __int64
N #ifdef __INT64_TYPE__
S #define __int64 __INT64_TYPE__
N #endif
N /* On some architectures neither of these may be defined - if so, fall
N through and error out if used. */
N#endif
N
N
N#define _ARMABI __declspec(__nothrow)
N
N #ifndef __STDIO_DECLS
N #define __STDIO_DECLS
N
N #undef __CLIBNS
N #ifdef __cplusplus
S namespace std {
S #define __CLIBNS ::std::
S extern "C" {
N #else /* ndef __cplusplus */
N #define __CLIBNS
N #endif /* ndef __cplusplus */
N
N#if defined(__cplusplus) || !defined(__STRICT_ANSI__) || !defined(__size_t)
X#if 0L || !0L || !0L
N /* always defined in C++ and non-strict C for consistency of debug info */
N #if __sizeof_ptr == 8
X #if 4 == 8
S typedef unsigned long size_t; /* see <stddef.h> */
N #else
N typedef unsigned int size_t; /* see <stddef.h> */
N #endif
N #if !defined(__cplusplus) && defined(__STRICT_ANSI__)
X #if !0L && 0L
S #define __size_t 1
N #endif
N#endif
N
N#undef NULL
N#define NULL 0 /* see <stddef.h> */
N
N/* ANSI forbids va_list to be defined here */
N/* keep in step with <stdarg.h> and <wchar.h> */
N#if !defined(__va_list) && (defined(__cplusplus) || !defined(__STRICT_ANSI__) || !defined(__va_list_defined))
X#if !0L && (0L || !0L || !0L)
N/* always defined in C++ and non-strict C for consistency of debug info */
N #ifdef __clang__
S typedef __builtin_va_list __va_list;
N #else
N typedef struct __va_list __va_list;
N #endif
N #if !defined(__cplusplus) && defined(__STRICT_ANSI__)
X #if !0L && 0L
S #define __va_list_defined 1
N #endif
N#endif
N
N /*
N * If the compiler supports signalling nans as per N965 then it
N * will define __SUPPORT_SNAN__, in which case a user may define
N * _WANT_SNAN in order to obtain compliant versions of the printf
N * and scanf families of functions
N */
N#if defined(__SUPPORT_SNAN__) && defined(_WANT_SNAN)
X#if 0L && 0L
S#pragma import(__use_snan)
N#endif
N
Ntypedef struct __fpos_t_struct {
N unsigned __int64 __pos;
N /*
N * this structure is equivalent to an mbstate_t, but we're not
N * allowed to actually define the type name `mbstate_t' within
N * stdio.h
N */
N struct {
N unsigned int __state1, __state2;
N } __mbstate;
N} fpos_t;
N /*
N * fpos_t is an object capable of recording all information needed to
N * specify uniquely every position within a file.
N */
N
N#define _SYS_OPEN 16
N /* _SYS_OPEN defines a limit on the number of open files that is imposed
N * by this C library
N */
N
Ntypedef struct __FILE FILE;
N /*
N * FILE is an object capable of recording all information needed to control
N * a stream, such as its file position indicator, a pointer to its
N * associated buffer, an error indicator that records whether a read/write
N * error has occurred and an end-of-file indicator that records whether the
N * end-of-file has been reached.
N * Its structure is not made known to library clients.
N */
N
N#if defined(__STRICT_ANSI__) && !__FILE_INCOMPLETE
X#if 0L && !__FILE_INCOMPLETE
Sstruct __FILE {
S union {
S long __FILE_alignment;
S#ifdef __TARGET_ARCH_AARCH64
S char __FILE_size[136];
S#else /* __TARGET_ARCH_AARCH64 */
S char __FILE_size[84];
S#endif /* __TARGET_ARCH_AARCH64 */
S } __FILE_opaque;
S};
S /*
S * FILE must be an object type (C99 - 7.19.1) and an object type fully
S * describes an object [including its static size] (C99 - 6.2.5).
S * This definition is a placeholder which matches the struct __FILE in
S * size and alignment as used internally by libc.
S */
N#endif
N
N
Nextern FILE __stdin, __stdout, __stderr;
Nextern FILE *__aeabi_stdin, *__aeabi_stdout, *__aeabi_stderr;
N
N#if _AEABI_PORTABILITY_LEVEL != 0 || (!defined _AEABI_PORTABILITY_LEVEL && __DEFAULT_AEABI_PORTABILITY_LEVEL != 0)
X#if _AEABI_PORTABILITY_LEVEL != 0 || (!0L && __DEFAULT_AEABI_PORTABILITY_LEVEL != 0)
S#define stdin (__CLIBNS __aeabi_stdin)
S /* pointer to a FILE object associated with standard input stream */
S#define stdout (__CLIBNS __aeabi_stdout)
S /* pointer to a FILE object associated with standard output stream */
S#define stderr (__CLIBNS __aeabi_stderr)
S /* pointer to a FILE object associated with standard error stream */
Sextern const int __aeabi_IOFBF;
S#define _IOFBF (__CLIBNS __aeabi_IOFBF)
Sextern const int __aeabi_IONBF;
S#define _IONBF (__CLIBNS __aeabi_IONBF)
Sextern const int __aeabi_IOLBF;
S#define _IOLBF (__CLIBNS __aeabi_IOLBF)
Sextern const int __aeabi_BUFSIZ;
S#define BUFSIZ (__CLIBNS __aeabi_BUFSIZ)
Sextern const int __aeabi_FOPEN_MAX;
S#define FOPEN_MAX (__CLIBNS __aeabi_FOPEN_MAX)
Sextern const int __aeabi_TMP_MAX;
S#define TMP_MAX (__CLIBNS __aeabi_TMP_MAX)
Sextern const int __aeabi_FILENAME_MAX;
S#define FILENAME_MAX (__CLIBNS __aeabi_FILENAME_MAX)
Sextern const int __aeabi_L_tmpnam;
S#define L_tmpnam (__CLIBNS __aeabi_L_tmpnam)
N#else
N#define stdin (&__CLIBNS __stdin)
N /* pointer to a FILE object associated with standard input stream */
N#define stdout (&__CLIBNS __stdout)
N /* pointer to a FILE object associated with standard output stream */
N#define stderr (&__CLIBNS __stderr)
N /* pointer to a FILE object associated with standard error stream */
N
N#define _IOFBF 0x100 /* fully buffered IO */
N#define _IOLBF 0x200 /* line buffered IO */
N#define _IONBF 0x400 /* unbuffered IO */
N
N /* Various default file IO buffer sizes */
N#define BUFSIZ (512) /* system buffer size (as used by setbuf) */
N
N#define FOPEN_MAX _SYS_OPEN
N /*
N * an integral constant expression that is the minimum number of files that
N * this implementation guarantees can be open simultaneously.
N */
N
N#define FILENAME_MAX 256
N /*
N * an integral constant expression that is the size of an array of char
N * large enough to hold the longest filename string
N */
N#define L_tmpnam FILENAME_MAX
N /*
N * an integral constant expression that is the size of an array of char
N * large enough to hold a temporary file name string generated by the
N * tmpnam function.
N */
N#define TMP_MAX 256
N /*
N * an integral constant expression that is the minimum number of unique
N * file names that shall be generated by the tmpnam function.
N */
N
N#endif
N
N#define EOF (-1)
N /*
N * negative integral constant, indicates end-of-file, that is, no more input
N * from a stream.
N */
N
N#define SEEK_SET 0 /* start of stream (see fseek) */
N#define SEEK_CUR 1 /* current position in stream (see fseek) */
N#define SEEK_END 2 /* end of stream (see fseek) */
N
N /*
N * _IOBIN is the flag passed to _sys_write to denote a binary
N * file.
N */
N#define _IOBIN 0x04 /* binary stream */
N
N#define __STDIN_BUFSIZ (64) /* default stdin buffer size */
N#define __STDOUT_BUFSIZ (64) /* default stdout buffer size */
N#define __STDERR_BUFSIZ (16) /* default stderr buffer size */
N
Nextern _ARMABI int remove(const char * /*filename*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int remove(const char * ) __attribute__((__nonnull__(1)));
N /*
N * causes the file whose name is the string pointed to by filename to be
N * removed. Subsequent attempts to open the file will fail, unless it is
N * created anew. If the file is open, the behaviour of the remove function
N * is implementation-defined.
N * Returns: zero if the operation succeeds, nonzero if it fails.
N */
Nextern _ARMABI int rename(const char * /*old*/, const char * /*new*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int rename(const char * , const char * ) __attribute__((__nonnull__(1,2)));
N /*
N * causes the file whose name is the string pointed to by old to be
N * henceforth known by the name given by the string pointed to by new. The
N * file named old is effectively removed. If a file named by the string
N * pointed to by new exists prior to the call of the rename function, the
N * behaviour is implementation-defined.
N * Returns: zero if the operation succeeds, nonzero if it fails, in which
N * case if the file existed previously it is still known by its
N * original name.
N */
Nextern _ARMABI FILE *tmpfile(void);
Xextern __declspec(__nothrow) FILE *tmpfile(void);
N /*
N * creates a temporary binary file that will be automatically removed when
N * it is closed or at program termination. The file is opened for update.
N * Returns: a pointer to the stream of the file that it created. If the file
N * cannot be created, a null pointer is returned.
N */
Nextern _ARMABI char *tmpnam(char * /*s*/);
Xextern __declspec(__nothrow) char *tmpnam(char * );
N /*
N * generates a string that is not the same as the name of an existing file.
N * The tmpnam function generates a different string each time it is called,
N * up to TMP_MAX times. If it is called more than TMP_MAX times, the
N * behaviour is implementation-defined.
N * Returns: If the argument is a null pointer, the tmpnam function leaves
N * its result in an internal static object and returns a pointer to
N * that object. Subsequent calls to the tmpnam function may modify
N * the same object. if the argument is not a null pointer, it is
N * assumed to point to an array of at least L_tmpnam characters;
N * the tmpnam function writes its result in that array and returns
N * the argument as its value.
N */
N
Nextern _ARMABI int fclose(FILE * /*stream*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int fclose(FILE * ) __attribute__((__nonnull__(1)));
N /*
N * causes the stream pointed to by stream to be flushed and the associated
N * file to be closed. Any unwritten buffered data for the stream are
N * delivered to the host environment to be written to the file; any unread
N * buffered data are discarded. The stream is disassociated from the file.
N * If the associated buffer was automatically allocated, it is deallocated.
N * Returns: zero if the stream was succesfully closed, or nonzero if any
N * errors were detected or if the stream was already closed.
N */
Nextern _ARMABI int fflush(FILE * /*stream*/);
Xextern __declspec(__nothrow) int fflush(FILE * );
N /*
N * If the stream points to an output or update stream in which the most
N * recent operation was output, the fflush function causes any unwritten
N * data for that stream to be delivered to the host environment to be
N * written to the file. If the stream points to an input or update stream,
N * the fflush function undoes the effect of any preceding ungetc operation
N * on the stream.
N * Returns: nonzero if a write error occurs.
N */
Nextern _ARMABI FILE *fopen(const char * __restrict /*filename*/,
Xextern __declspec(__nothrow) FILE *fopen(const char * __restrict ,
N const char * __restrict /*mode*/) __attribute__((__nonnull__(1,2)));
N /*
N * opens the file whose name is the string pointed to by filename, and
N * associates a stream with it.
N * The argument mode points to a string beginning with one of the following
N * sequences:
N * "r" open text file for reading
N * "w" create text file for writing, or truncate to zero length
N * "a" append; open text file or create for writing at eof
N * "rb" open binary file for reading
N * "wb" create binary file for writing, or truncate to zero length
N * "ab" append; open binary file or create for writing at eof
N * "r+" open text file for update (reading and writing)
N * "w+" create text file for update, or truncate to zero length
N * "a+" append; open text file or create for update, writing at eof
N * "r+b"/"rb+" open binary file for update (reading and writing)
N * "w+b"/"wb+" create binary file for update, or truncate to zero length
N * "a+b"/"ab+" append; open binary file or create for update, writing at eof
N *
N * Opening a file with read mode ('r' as the first character in the mode
N * argument) fails if the file does not exist or cannot be read.
N * Opening a file with append mode ('a' as the first character in the mode
N * argument) causes all subsequent writes to be forced to the current end of
N * file, regardless of intervening calls to the fseek function. In some
N * implementations, opening a binary file with append mode ('b' as the
N * second or third character in the mode argument) may initially position
N * the file position indicator beyond the last data written, because of the
N * NUL padding.
N * When a file is opened with update mode ('+' as the second or third
N * character in the mode argument), both input and output may be performed
N * on the associated stream. However, output may not be directly followed
N * by input without an intervening call to the fflush fuction or to a file
N * positioning function (fseek, fsetpos, or rewind), and input be not be
N * directly followed by output without an intervening call to the fflush
N * fuction or to a file positioning function, unless the input operation
N * encounters end-of-file. Opening a file with update mode may open or
N * create a binary stream in some implementations. When opened, a stream
N * is fully buffered if and only if it does not refer to an interactive
N * device. The error and end-of-file indicators for the stream are
N * cleared.
N * Returns: a pointer to the object controlling the stream. If the open
N * operation fails, fopen returns a null pointer.
N */
Nextern _ARMABI FILE *freopen(const char * __restrict /*filename*/,
Xextern __declspec(__nothrow) FILE *freopen(const char * __restrict ,
N const char * __restrict /*mode*/,
N FILE * __restrict /*stream*/) __attribute__((__nonnull__(2,3)));
N /*
N * opens the file whose name is the string pointed to by filename and
N * associates the stream pointed to by stream with it. The mode argument is
N * used just as in the fopen function.
N * The freopen function first attempts to close any file that is associated
N * with the specified stream. Failure to close the file successfully is
N * ignored. The error and end-of-file indicators for the stream are cleared.
N * Returns: a null pointer if the operation fails. Otherwise, freopen
N * returns the value of the stream.
N */
Nextern _ARMABI void setbuf(FILE * __restrict /*stream*/,
Xextern __declspec(__nothrow) void setbuf(FILE * __restrict ,
N char * __restrict /*buf*/) __attribute__((__nonnull__(1)));
N /*
N * Except that it returns no value, the setbuf function is equivalent to the
N * setvbuf function invoked with the values _IOFBF for mode and BUFSIZ for
N * size, or (if buf is a null pointer), with the value _IONBF for mode.
N * Returns: no value.
N */
Nextern _ARMABI int setvbuf(FILE * __restrict /*stream*/,
Xextern __declspec(__nothrow) int setvbuf(FILE * __restrict ,
N char * __restrict /*buf*/,
N int /*mode*/, size_t /*size*/) __attribute__((__nonnull__(1)));
N /*
N * may be used after the stream pointed to by stream has been associated
N * with an open file but before it is read or written. The argument mode
N * determines how stream will be buffered, as follows: _IOFBF causes
N * input/output to be fully buffered; _IOLBF causes output to be line
N * buffered (the buffer will be flushed when a new-line character is
N * written, when the buffer is full, or when input is requested); _IONBF
N * causes input/output to be completely unbuffered. If buf is not the null
N * pointer, the array it points to may be used instead of an automatically
N * allocated buffer (the buffer must have a lifetime at least as great as
N * the open stream, so the stream should be closed before a buffer that has
N * automatic storage duration is deallocated upon block exit). The argument
N * size specifies the size of the array. The contents of the array at any
N * time are indeterminate.
N * Returns: zero on success, or nonzero if an invalid value is given for
N * mode or size, or if the request cannot be honoured.
N */
N#pragma __printf_args
Nextern _ARMABI int fprintf(FILE * __restrict /*stream*/,
Xextern __declspec(__nothrow) int fprintf(FILE * __restrict ,
N const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1,2)));
N /*
N * writes output to the stream pointed to by stream, under control of the
N * string pointed to by format that specifies how subsequent arguments are
N * converted for output. If there are insufficient arguments for the format,
N * the behaviour is undefined. If the format is exhausted while arguments
N * remain, the excess arguments are evaluated but otherwise ignored. The
N * fprintf function returns when the end of the format string is reached.
N * The format shall be a multibyte character sequence, beginning and ending
N * in its initial shift state. The format is composed of zero or more
N * directives: ordinary multibyte characters (not %), which are copied
N * unchanged to the output stream; and conversion specifiers, each of which
N * results in fetching zero or more subsequent arguments. Each conversion
N * specification is introduced by the character %. For a description of the
N * available conversion specifiers refer to section 4.9.6.1 in the ANSI
N * draft mentioned at the start of this file or to any modern textbook on C.
N * The minimum value for the maximum number of characters producable by any
N * single conversion is at least 509.
N * Returns: the number of characters transmitted, or a negative value if an
N * output error occurred.
N */
N#pragma __printf_args
Nextern _ARMABI int _fprintf(FILE * __restrict /*stream*/,
Xextern __declspec(__nothrow) int _fprintf(FILE * __restrict ,
N const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1,2)));
N /*
N * is equivalent to fprintf, but does not support floating-point formats.
N * You can use instead of fprintf to improve code size.
N * Returns: as fprintf.
N */
N#pragma __printf_args
Nextern _ARMABI int printf(const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int printf(const char * __restrict , ...) __attribute__((__nonnull__(1)));
N /*
N * is equivalent to fprintf with the argument stdout interposed before the
N * arguments to printf.
N * Returns: the number of characters transmitted, or a negative value if an
N * output error occurred.
N */
N#pragma __printf_args
Nextern _ARMABI int _printf(const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int _printf(const char * __restrict , ...) __attribute__((__nonnull__(1)));
N /*
N * is equivalent to printf, but does not support floating-point formats.
N * You can use instead of printf to improve code size.
N * Returns: as printf.
N */
N#pragma __printf_args
Nextern _ARMABI int sprintf(char * __restrict /*s*/, const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int sprintf(char * __restrict , const char * __restrict , ...) __attribute__((__nonnull__(1,2)));
N /*
N * is equivalent to fprintf, except that the argument s specifies an array
N * into which the generated output is to be written, rather than to a
N * stream. A null character is written at the end of the characters written;
N * it is not counted as part of the returned sum.
N * Returns: the number of characters written to the array, not counting the
N * terminating null character.
N */
N#pragma __printf_args
Nextern _ARMABI int _sprintf(char * __restrict /*s*/, const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int _sprintf(char * __restrict , const char * __restrict , ...) __attribute__((__nonnull__(1,2)));
N /*
N * is equivalent to sprintf, but does not support floating-point formats.
N * You can use instead of sprintf to improve code size.
N * Returns: as sprintf.
N */
N
N#pragma __printf_args
Nextern _ARMABI int __ARM_snprintf(char * __restrict /*s*/, size_t /*n*/,
Xextern __declspec(__nothrow) int __ARM_snprintf(char * __restrict , size_t ,
N const char * __restrict /*format*/, ...) __attribute__((__nonnull__(3)));
N
N#if !defined(__STRICT_ANSI__) || (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__) || (defined(__cplusplus) && 201103L <= __cplusplus)
X#if !0L || (1L && 199901L <= 199901L) || (0L && 201103L <= __cplusplus)
N#pragma __printf_args
Nextern _ARMABI int snprintf(char * __restrict /*s*/, size_t /*n*/,
Xextern __declspec(__nothrow) int snprintf(char * __restrict , size_t ,
N const char * __restrict /*format*/, ...) __attribute__((__nonnull__(3)));
N /*
N * is equivalent to fprintf, except that the argument s specifies an array
N * into which the generated output is to be written, rather than to a
N * stream. The argument n specifies the size of the output array, so as to
N * avoid overflowing the buffer.
N * A null character is written at the end of the characters written, even
N * if the formatting was not completed; it is not counted as part of the
N * returned sum. At most n characters of the output buffer are used,
N * _including_ the null character.
N * Returns: the number of characters that would have been written to the
N * array, not counting the terminating null character, if the
N * array had been big enough. So if the return is >=0 and <n, then
N * the entire string was successfully formatted; if the return is
N * >=n, the string was truncated (but there is still a null char
N * at the end of what was written); if the return is <0, there was
N * an error.
N */
N#endif
N#pragma __printf_args
Nextern _ARMABI int _snprintf(char * __restrict /*s*/, size_t /*n*/,
Xextern __declspec(__nothrow) int _snprintf(char * __restrict , size_t ,
N const char * __restrict /*format*/, ...) __attribute__((__nonnull__(3)));
N /*
N * is equivalent to snprintf, but does not support floating-point formats.
N * You can use instead of snprintf to improve code size.
N * Returns: as snprintf.
N */
N#pragma __scanf_args
Nextern _ARMABI int fscanf(FILE * __restrict /*stream*/,
Xextern __declspec(__nothrow) int fscanf(FILE * __restrict ,
N const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1,2)));
N /*
N * reads input from the stream pointed to by stream, under control of the
N * string pointed to by format that specifies the admissible input sequences
N * and how thay are to be converted for assignment, using subsequent
N * arguments as pointers to the objects to receive the converted input. If
N * there are insufficient arguments for the format, the behaviour is
N * undefined. If the format is exhausted while arguments remain, the excess
N * arguments are evaluated but otherwise ignored.
N * The format is composed of zero or more directives: one or more
N * white-space characters; an ordinary character (not %); or a conversion
N * specification. Each conversion specification is introduced by the
N * character %. For a description of the available conversion specifiers
N * refer to section 4.9.6.2 in the ANSI draft mentioned at the start of this
N * file, or to any modern textbook on C.
N * If end-of-file is encountered during input, conversion is terminated. If
N * end-of-file occurs before any characters matching the current directive
N * have been read (other than leading white space, where permitted),
N * execution of the current directive terminates with an input failure;
N * otherwise, unless execution of the current directive is terminated with a
N * matching failure, execution of the following directive (if any) is
N * terminated with an input failure.
N * If conversions terminates on a conflicting input character, the offending
N * input character is left unread in the input strem. Trailing white space
N * (including new-line characters) is left unread unless matched by a
N * directive. The success of literal matches and suppressed asignments is
N * not directly determinable other than via the %n directive.
N * Returns: the value of the macro EOF if an input failure occurs before any
N * conversion. Otherwise, the fscanf function returns the number of
N * input items assigned, which can be fewer than provided for, or
N * even zero, in the event of an early conflict between an input
N * character and the format.
N */
N#pragma __scanf_args
Nextern _ARMABI int _fscanf(FILE * __restrict /*stream*/,
Xextern __declspec(__nothrow) int _fscanf(FILE * __restrict ,
N const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1,2)));
N /*
N * is equivalent to fscanf, but does not support floating-point formats.
N * You can use instead of fscanf to improve code size.
N * Returns: as fscanf.
N */
N#pragma __scanf_args
Nextern _ARMABI int scanf(const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int scanf(const char * __restrict , ...) __attribute__((__nonnull__(1)));
N /*
N * is equivalent to fscanf with the argument stdin interposed before the
N * arguments to scanf.
N * Returns: the value of the macro EOF if an input failure occurs before any
N * conversion. Otherwise, the scanf function returns the number of
N * input items assigned, which can be fewer than provided for, or
N * even zero, in the event of an early matching failure.
N */
N#pragma __scanf_args
Nextern _ARMABI int _scanf(const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int _scanf(const char * __restrict , ...) __attribute__((__nonnull__(1)));
N /*
N * is equivalent to scanf, but does not support floating-point formats.
N * You can use instead of scanf to improve code size.
N * Returns: as scanf.
N */
N#pragma __scanf_args
Nextern _ARMABI int sscanf(const char * __restrict /*s*/,
Xextern __declspec(__nothrow) int sscanf(const char * __restrict ,
N const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1,2)));
N /*
N * is equivalent to fscanf except that the argument s specifies a string
N * from which the input is to be obtained, rather than from a stream.
N * Reaching the end of the string is equivalent to encountering end-of-file
N * for the fscanf function.
N * Returns: the value of the macro EOF if an input failure occurs before any
N * conversion. Otherwise, the scanf function returns the number of
N * input items assigned, which can be fewer than provided for, or
N * even zero, in the event of an early matching failure.
N */
N#pragma __scanf_args
Nextern _ARMABI int _sscanf(const char * __restrict /*s*/,
Xextern __declspec(__nothrow) int _sscanf(const char * __restrict ,
N const char * __restrict /*format*/, ...) __attribute__((__nonnull__(1,2)));
N /*
N * is equivalent to sscanf, but does not support floating-point formats.
N * You can use instead of sscanf to improve code size.
N * Returns: as sscanf.
N */
N#if !defined(__STRICT_ANSI__) || (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__) || (defined(__cplusplus) && 201103L <= __cplusplus)
X#if !0L || (1L && 199901L <= 199901L) || (0L && 201103L <= __cplusplus)
N/* C99 additions */
Nextern _ARMABI int vfscanf(FILE * __restrict /*stream*/, const char * __restrict /*format*/, __va_list) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int vfscanf(FILE * __restrict , const char * __restrict , __va_list) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI int vscanf(const char * __restrict /*format*/, __va_list) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int vscanf(const char * __restrict , __va_list) __attribute__((__nonnull__(1)));
Nextern _ARMABI int vsscanf(const char * __restrict /*s*/, const char * __restrict /*format*/, __va_list) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int vsscanf(const char * __restrict , const char * __restrict , __va_list) __attribute__((__nonnull__(1,2)));
N#endif
Nextern _ARMABI int _vfscanf(FILE * __restrict /*stream*/, const char * __restrict /*format*/, __va_list) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int _vfscanf(FILE * __restrict , const char * __restrict , __va_list) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI int _vscanf(const char * __restrict /*format*/, __va_list) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int _vscanf(const char * __restrict , __va_list) __attribute__((__nonnull__(1)));
Nextern _ARMABI int _vsscanf(const char * __restrict /*s*/, const char * __restrict /*format*/, __va_list) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int _vsscanf(const char * __restrict , const char * __restrict , __va_list) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI int __ARM_vsscanf(const char * __restrict /*s*/, const char * __restrict /*format*/, __va_list) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int __ARM_vsscanf(const char * __restrict , const char * __restrict , __va_list) __attribute__((__nonnull__(1,2)));
N
Nextern _ARMABI int vprintf(const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int vprintf(const char * __restrict , __va_list ) __attribute__((__nonnull__(1)));
N /*
N * is equivalent to printf, with the variable argument list replaced by arg,
N * which has been initialised by the va_start macro (and possibly subsequent
N * va_arg calls). The vprintf function does not invoke the va_end function.
N * Returns: the number of characters transmitted, or a negative value if an
N * output error occurred.
N */
Nextern _ARMABI int _vprintf(const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int _vprintf(const char * __restrict , __va_list ) __attribute__((__nonnull__(1)));
N /*
N * is equivalent to vprintf, but does not support floating-point formats.
N * You can use instead of vprintf to improve code size.
N * Returns: as vprintf.
N */
Nextern _ARMABI int vfprintf(FILE * __restrict /*stream*/,
Xextern __declspec(__nothrow) int vfprintf(FILE * __restrict ,
N const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(1,2)));
N /*
N * is equivalent to fprintf, with the variable argument list replaced by
N * arg, which has been initialised by the va_start macro (and possibly
N * subsequent va_arg calls). The vfprintf function does not invoke the
N * va_end function.
N * Returns: the number of characters transmitted, or a negative value if an
N * output error occurred.
N */
Nextern _ARMABI int vsprintf(char * __restrict /*s*/,
Xextern __declspec(__nothrow) int vsprintf(char * __restrict ,
N const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(1,2)));
N /*
N * is equivalent to sprintf, with the variable argument list replaced by
N * arg, which has been initialised by the va_start macro (and possibly
N * subsequent va_arg calls). The vsprintf function does not invoke the
N * va_end function.
N * Returns: the number of characters written in the array, not counting the
N * terminating null character.
N */
Nextern _ARMABI int __ARM_vsnprintf(char * __restrict /*s*/, size_t /*n*/,
Xextern __declspec(__nothrow) int __ARM_vsnprintf(char * __restrict , size_t ,
N const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(3)));
N#if !defined(__STRICT_ANSI__) || (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__) || (defined(__cplusplus) && 201103L <= __cplusplus)
X#if !0L || (1L && 199901L <= 199901L) || (0L && 201103L <= __cplusplus)
Nextern _ARMABI int vsnprintf(char * __restrict /*s*/, size_t /*n*/,
Xextern __declspec(__nothrow) int vsnprintf(char * __restrict , size_t ,
N const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(3)));
N /*
N * is equivalent to snprintf, with the variable argument list replaced by
N * arg, which has been initialised by the va_start macro (and possibly
N * subsequent va_arg calls). The vsprintf function does not invoke the
N * va_end function.
N * Returns: the number of characters that would have been written in the
N * array, not counting the terminating null character. As
N * snprintf.
N */
N#endif
Nextern _ARMABI int _vsprintf(char * __restrict /*s*/,
Xextern __declspec(__nothrow) int _vsprintf(char * __restrict ,
N const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(1,2)));
N /*
N * is equivalent to vsprintf, but does not support floating-point formats.
N * You can use instead of vsprintf to improve code size.
N * Returns: as vsprintf.
N */
Nextern _ARMABI int _vfprintf(FILE * __restrict /*stream*/,
Xextern __declspec(__nothrow) int _vfprintf(FILE * __restrict ,
N const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(1,2)));
N /*
N * is equivalent to vfprintf, but does not support floating-point formats.
N * You can use instead of vfprintf to improve code size.
N * Returns: as vfprintf.
N */
Nextern _ARMABI int _vsnprintf(char * __restrict /*s*/, size_t /*n*/,
Xextern __declspec(__nothrow) int _vsnprintf(char * __restrict , size_t ,
N const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(3)));
N /*
N * is equivalent to vsnprintf, but does not support floating-point formats.
N * You can use instead of vsnprintf to improve code size.
N * Returns: as vsnprintf.
N */
N#if !defined(__STRICT_ANSI__)
X#if !0L
N#pragma __printf_args
Nextern _ARMABI int asprintf(char ** /*strp*/, const char * __restrict /*format*/, ...) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) int asprintf(char ** , const char * __restrict , ...) __attribute__((__nonnull__(2)));
Nextern _ARMABI int vasprintf(char ** /*strp*/, const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) int vasprintf(char ** , const char * __restrict , __va_list ) __attribute__((__nonnull__(2)));
N#endif
N#pragma __printf_args
Nextern _ARMABI int __ARM_asprintf(char ** /*strp*/, const char * __restrict /*format*/, ...) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) int __ARM_asprintf(char ** , const char * __restrict , ...) __attribute__((__nonnull__(2)));
Nextern _ARMABI int __ARM_vasprintf(char ** /*strp*/, const char * __restrict /*format*/, __va_list /*arg*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) int __ARM_vasprintf(char ** , const char * __restrict , __va_list ) __attribute__((__nonnull__(2)));
N /*
N * dynamically allocates a buffer of the right size for the
N * formatted string, and returns it in (*strp). Formal return value
N * is the same as any other printf variant, except that it returns
N * -1 if the buffer could not be allocated.
N *
N * (The functions with __ARM_ prefixed names are identical to the
N * ones without, but are available in all compilation modes without
N * violating user namespace.)
N */
N
Nextern _ARMABI int fgetc(FILE * /*stream*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int fgetc(FILE * ) __attribute__((__nonnull__(1)));
N /*
N * obtains the next character (if present) as an unsigned char converted to
N * an int, from the input stream pointed to by stream, and advances the
N * associated file position indicator (if defined).
N * Returns: the next character from the input stream pointed to by stream.
N * If the stream is at end-of-file, the end-of-file indicator is
N * set and fgetc returns EOF. If a read error occurs, the error
N * indicator is set and fgetc returns EOF.
N */
Nextern _ARMABI char *fgets(char * __restrict /*s*/, int /*n*/,
Xextern __declspec(__nothrow) char *fgets(char * __restrict , int ,
N FILE * __restrict /*stream*/) __attribute__((__nonnull__(1,3)));
N /*
N * reads at most one less than the number of characters specified by n from
N * the stream pointed to by stream into the array pointed to by s. No
N * additional characters are read after a new-line character (which is
N * retained) or after end-of-file. A null character is written immediately
N * after the last character read into the array.
N * Returns: s if successful. If end-of-file is encountered and no characters
N * have been read into the array, the contents of the array remain
N * unchanged and a null pointer is returned. If a read error occurs
N * during the operation, the array contents are indeterminate and a
N * null pointer is returned.
N */
Nextern _ARMABI int fputc(int /*c*/, FILE * /*stream*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) int fputc(int , FILE * ) __attribute__((__nonnull__(2)));
N /*
N * writes the character specified by c (converted to an unsigned char) to
N * the output stream pointed to by stream, at the position indicated by the
N * asociated file position indicator (if defined), and advances the
N * indicator appropriately. If the file position indicator is not defined,
N * the character is appended to the output stream.
N * Returns: the character written. If a write error occurs, the error
N * indicator is set and fputc returns EOF.
N */
Nextern _ARMABI int fputs(const char * __restrict /*s*/, FILE * __restrict /*stream*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int fputs(const char * __restrict , FILE * __restrict ) __attribute__((__nonnull__(1,2)));
N /*
N * writes the string pointed to by s to the stream pointed to by stream.
N * The terminating null character is not written.
N * Returns: EOF if a write error occurs; otherwise it returns a nonnegative
N * value.
N */
Nextern _ARMABI int getc(FILE * /*stream*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int getc(FILE * ) __attribute__((__nonnull__(1)));
N /*
N * is equivalent to fgetc except that it may be implemented as an unsafe
N * macro (stream may be evaluated more than once, so the argument should
N * never be an expression with side-effects).
N * Returns: the next character from the input stream pointed to by stream.
N * If the stream is at end-of-file, the end-of-file indicator is
N * set and getc returns EOF. If a read error occurs, the error
N * indicator is set and getc returns EOF.
N */
N#ifdef __cplusplus
S inline int getchar() { return getc(stdin); }
N#else
N #define getchar() getc(stdin)
N extern _ARMABI int (getchar)(void);
X extern __declspec(__nothrow) int (getchar)(void);
N#endif
N /*
N * is equivalent to getc with the argument stdin.
N * Returns: the next character from the input stream pointed to by stdin.
N * If the stream is at end-of-file, the end-of-file indicator is
N * set and getchar returns EOF. If a read error occurs, the error
N * indicator is set and getchar returns EOF.
N */
Nextern _ARMABI char *gets(char * /*s*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) char *gets(char * ) __attribute__((__nonnull__(1)));
N /*
N * reads characters from the input stream pointed to by stdin into the array
N * pointed to by s, until end-of-file is encountered or a new-line character
N * is read. Any new-line character is discarded, and a null character is
N * written immediately after the last character read into the array.
N * Returns: s if successful. If end-of-file is encountered and no characters
N * have been read into the array, the contents of the array remain
N * unchanged and a null pointer is returned. If a read error occurs
N * during the operation, the array contents are indeterminate and a
N * null pointer is returned.
N */
Nextern _ARMABI int putc(int /*c*/, FILE * /*stream*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) int putc(int , FILE * ) __attribute__((__nonnull__(2)));
N /*
N * is equivalent to fputc except that it may be implemented as aan unsafe
N * macro (stream may be evaluated more than once, so the argument should
N * never be an expression with side-effects).
N * Returns: the character written. If a write error occurs, the error
N * indicator is set and putc returns EOF.
N */
N#ifdef __cplusplus
S inline int putchar(int __c) { return putc(__c, stdout); }
N#else
N #define putchar(c) putc(c, stdout)
N extern _ARMABI int (putchar)(int /*c*/);
X extern __declspec(__nothrow) int (putchar)(int );
N#endif
N /*
N * is equivalent to putc with the second argument stdout.
N * Returns: the character written. If a write error occurs, the error
N * indicator is set and putc returns EOF.
N */
Nextern _ARMABI int puts(const char * /*s*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int puts(const char * ) __attribute__((__nonnull__(1)));
N /*
N * writes the string pointed to by s to the stream pointed to by stdout, and
N * appends a new-line character to the output. The terminating null
N * character is not written.
N * Returns: EOF if a write error occurs; otherwise it returns a nonnegative
N * value.
N */
Nextern _ARMABI int ungetc(int /*c*/, FILE * /*stream*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) int ungetc(int , FILE * ) __attribute__((__nonnull__(2)));
N /*
N * pushes the character specified by c (converted to an unsigned char) back
N * onto the input stream pointed to by stream. The character will be
N * returned by the next read on that stream. An intervening call to the
N * fflush function or to a file positioning function (fseek, fsetpos,
N * rewind) discards any pushed-back characters. The extern _ARMABIal storage
N * corresponding to the stream is unchanged.
N * One character pushback is guaranteed. If the unget function is called too
N * many times on the same stream without an intervening read or file
N * positioning operation on that stream, the operation may fail.
N * If the value of c equals that of the macro EOF, the operation fails and
N * the input stream is unchanged.
N * A successful call to the ungetc function clears the end-of-file
N * indicator. The value of the file position indicator after reading or
N * discarding all pushed-back characters shall be the same as it was before
N * the characters were pushed back. For a text stream, the value of the file
N * position indicator after a successful call to the ungetc function is
N * unspecified until all pushed-back characters are read or discarded. For a
N * binary stream, the file position indicator is decremented by each
N * successful call to the ungetc function; if its value was zero before a
N * call, it is indeterminate after the call.
N * Returns: the character pushed back after conversion, or EOF if the
N * operation fails.
N */
N
Nextern _ARMABI size_t fread(void * __restrict /*ptr*/,
Xextern __declspec(__nothrow) size_t fread(void * __restrict ,
N size_t /*size*/, size_t /*nmemb*/, FILE * __restrict /*stream*/) __attribute__((__nonnull__(1,4)));
N /*
N * reads into the array pointed to by ptr, up to nmemb members whose size is
N * specified by size, from the stream pointed to by stream. The file
N * position indicator (if defined) is advanced by the number of characters
N * successfully read. If an error occurs, the resulting value of the file
N * position indicator is indeterminate. If a partial member is read, its
N * value is indeterminate. The ferror or feof function shall be used to
N * distinguish between a read error and end-of-file.
N * Returns: the number of members successfully read, which may be less than
N * nmemb if a read error or end-of-file is encountered. If size or
N * nmemb is zero, fread returns zero and the contents of the array
N * and the state of the stream remain unchanged.
N */
N
Nextern _ARMABI size_t __fread_bytes_avail(void * __restrict /*ptr*/,
Xextern __declspec(__nothrow) size_t __fread_bytes_avail(void * __restrict ,
N size_t /*count*/, FILE * __restrict /*stream*/) __attribute__((__nonnull__(1,3)));
N /*
N * reads into the array pointed to by ptr, up to count characters from the
N * stream pointed to by stream. The file position indicator (if defined)
N * is advanced by the number of characters successfully read. If an error
N * occurs, the resulting value of the file position indicator is
N * indeterminate. The ferror or feof function shall be used to
N * distinguish between a read error and end-of-file. The call will block
N * only if no characters are available.
N * Returns: the number of characters successfully read, which may be less than
N * count. If count is zero, __fread_bytes_avail returns zero and
N * the contents of the array and the state of the stream remain
N * unchanged.
N */
N
Nextern _ARMABI size_t fwrite(const void * __restrict /*ptr*/,
Xextern __declspec(__nothrow) size_t fwrite(const void * __restrict ,
N size_t /*size*/, size_t /*nmemb*/, FILE * __restrict /*stream*/) __attribute__((__nonnull__(1,4)));
N /*
N * writes, from the array pointed to by ptr up to nmemb members whose size
N * is specified by size, to the stream pointed to by stream. The file
N * position indicator (if defined) is advanced by the number of characters
N * successfully written. If an error occurs, the resulting value of the file
N * position indicator is indeterminate.
N * Returns: the number of members successfully written, which will be less
N * than nmemb only if a write error is encountered.
N */
N
Nextern _ARMABI int fgetpos(FILE * __restrict /*stream*/, fpos_t * __restrict /*pos*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int fgetpos(FILE * __restrict , fpos_t * __restrict ) __attribute__((__nonnull__(1,2)));
N /*
N * stores the current value of the file position indicator for the stream
N * pointed to by stream in the object pointed to by pos. The value stored
N * contains unspecified information usable by the fsetpos function for
N * repositioning the stream to its position at the time of the call to the
N * fgetpos function.
N * Returns: zero, if successful. Otherwise nonzero is returned and the
N * integer expression errno is set to an implementation-defined
N * nonzero value.
N */
Nextern _ARMABI int fseek(FILE * /*stream*/, long int /*offset*/, int /*whence*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int fseek(FILE * , long int , int ) __attribute__((__nonnull__(1)));
N /*
N * sets the file position indicator for the stream pointed to by stream.
N * For a binary stream, the new position is at the signed number of
N * characters specified by offset away from the point specified by whence.
N * The specified point is the beginning of the file for SEEK_SET, the
N * current position in the file for SEEK_CUR, or end-of-file for SEEK_END.
N * A binary stream need not meaningfully support fseek calls with a whence
N * value of SEEK_END.
N * For a text stream, either offset shall be zero, or offset shall be a
N * value returned by an earlier call to the ftell function on the same
N * stream and whence shall be SEEK_SET.
N * The fseek function clears the end-of-file indicator and undoes any
N * effects of the ungetc function on the same stream. After an fseek call,
N * the next operation on an update stream may be either input or output.
N * Returns: nonzero only for a request that cannot be satisfied.
N */
Nextern _ARMABI int fsetpos(FILE * __restrict /*stream*/, const fpos_t * __restrict /*pos*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int fsetpos(FILE * __restrict , const fpos_t * __restrict ) __attribute__((__nonnull__(1,2)));
N /*
N * sets the file position indicator for the stream pointed to by stream
N * according to the value of the object pointed to by pos, which shall be a
N * value returned by an earlier call to the fgetpos function on the same
N * stream.
N * The fsetpos function clears the end-of-file indicator and undoes any
N * effects of the ungetc function on the same stream. After an fsetpos call,
N * the next operation on an update stream may be either input or output.
N * Returns: zero, if successful. Otherwise nonzero is returned and the
N * integer expression errno is set to an implementation-defined
N * nonzero value.
N */
Nextern _ARMABI long int ftell(FILE * /*stream*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) long int ftell(FILE * ) __attribute__((__nonnull__(1)));
N /*
N * obtains the current value of the file position indicator for the stream
N * pointed to by stream. For a binary stream, the value is the number of
N * characters from the beginning of the file. For a text stream, the file
N * position indicator contains unspecified information, usable by the fseek
N * function for returning the file position indicator to its position at the
N * time of the ftell call; the difference between two such return values is
N * not necessarily a meaningful measure of the number of characters written
N * or read.
N * Returns: if successful, the current value of the file position indicator.
N * On failure, the ftell function returns -1L and sets the integer
N * expression errno to an implementation-defined nonzero value.
N */
Nextern _ARMABI void rewind(FILE * /*stream*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) void rewind(FILE * ) __attribute__((__nonnull__(1)));
N /*
N * sets the file position indicator for the stream pointed to by stream to
N * the beginning of the file. It is equivalent to
N * (void)fseek(stream, 0L, SEEK_SET)
N * except that the error indicator for the stream is also cleared.
N * Returns: no value.
N */
N
Nextern _ARMABI void clearerr(FILE * /*stream*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) void clearerr(FILE * ) __attribute__((__nonnull__(1)));
N /*
N * clears the end-of-file and error indicators for the stream pointed to by
N * stream. These indicators are cleared only when the file is opened or by
N * an explicit call to the clearerr function or to the rewind function.
N * Returns: no value.
N */
N
Nextern _ARMABI int feof(FILE * /*stream*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int feof(FILE * ) __attribute__((__nonnull__(1)));
N /*
N * tests the end-of-file indicator for the stream pointed to by stream.
N * Returns: nonzero iff the end-of-file indicator is set for stream.
N */
Nextern _ARMABI int ferror(FILE * /*stream*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int ferror(FILE * ) __attribute__((__nonnull__(1)));
N /*
N * tests the error indicator for the stream pointed to by stream.
N * Returns: nonzero iff the error indicator is set for stream.
N */
Nextern _ARMABI void perror(const char * /*s*/);
Xextern __declspec(__nothrow) void perror(const char * );
N /*
N * maps the error number in the integer expression errno to an error
N * message. It writes a sequence of characters to the standard error stream
N * thus: first (if s is not a null pointer and the character pointed to by
N * s is not the null character), the string pointed to by s followed by a
N * colon and a space; then an appropriate error message string followed by
N * a new-line character. The contents of the error message strings are the
N * same as those returned by the strerror function with argument errno,
N * which are implementation-defined.
N * Returns: no value.
N */
N
Nextern _ARMABI int _fisatty(FILE * /*stream*/ ) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int _fisatty(FILE * ) __attribute__((__nonnull__(1)));
N /* Returns 1 if the stream is tty (stdin), 0 otherwise. Not ANSI compliant.
N */
N
Nextern _ARMABI void __use_no_semihosting_swi(void);
Xextern __declspec(__nothrow) void __use_no_semihosting_swi(void);
Nextern _ARMABI void __use_no_semihosting(void);
Xextern __declspec(__nothrow) void __use_no_semihosting(void);
N /*
N * Referencing either of these symbols will cause a link-time
N * error if any library functions that use semihosting SWI
N * calls are also present in the link, i.e. you define it if
N * you want to make sure you haven't accidentally used any such
N * SWIs.
N */
N
N #ifdef __cplusplus
S } /* extern "C" */
S } /* namespace std */
N #endif
N #endif /* __STDIO_DECLS */
N
N #if _AEABI_PORTABILITY_LEVEL != 0 && !defined _AEABI_PORTABLE
X #if _AEABI_PORTABILITY_LEVEL != 0 && !0L
S #define _AEABI_PORTABLE
N #endif
N
N #if defined(__cplusplus) && !defined(__STDIO_NO_EXPORTS)
X #if 0L && !0L
S using ::std::size_t;
S using ::std::fpos_t;
S using ::std::FILE;
S using ::std::remove;
S using ::std::rename;
S using ::std::tmpfile;
S using ::std::tmpnam;
S using ::std::fclose;
S using ::std::fflush;
S using ::std::fopen;
S using ::std::freopen;
S using ::std::setbuf;
S using ::std::setvbuf;
S using ::std::fprintf;
S using ::std::_fprintf;
S using ::std::printf;
S using ::std::_printf;
S using ::std::sprintf;
S using ::std::_sprintf;
S #if !defined(__STRICT_ANSI__) || (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__) || (defined(__cplusplus) && 201103L <= __cplusplus)
S using ::std::snprintf;
S using ::std::vsnprintf;
S using ::std::vfscanf;
S using ::std::vscanf;
S using ::std::vsscanf;
S #endif
S using ::std::_snprintf;
S using ::std::_vsnprintf;
S#if !defined(__STRICT_ANSI__)
S using ::std::asprintf;
S using ::std::vasprintf;
S#endif
S using ::std::__ARM_asprintf;
S using ::std::__ARM_vasprintf;
S using ::std::__ARM_vsnprintf;
S using ::std::__ARM_snprintf;
S using ::std::__ARM_vsscanf;
S using ::std::fscanf;
S using ::std::_fscanf;
S using ::std::scanf;
S using ::std::_scanf;
S using ::std::sscanf;
S using ::std::_sscanf;
S using ::std::_vfscanf;
S using ::std::_vscanf;
S using ::std::_vsscanf;
S using ::std::vprintf;
S using ::std::_vprintf;
S using ::std::vfprintf;
S using ::std::_vfprintf;
S using ::std::vsprintf;
S using ::std::_vsprintf;
S using ::std::fgetc;
S using ::std::fgets;
S using ::std::fputc;
S using ::std::fputs;
S using ::std::getc;
S using ::std::getchar;
S using ::std::gets;
S using ::std::putc;
S using ::std::putchar;
S using ::std::puts;
S using ::std::ungetc;
S using ::std::fread;
S using ::std::__fread_bytes_avail;
S using ::std::fwrite;
S using ::std::fgetpos;
S using ::std::fseek;
S using ::std::fsetpos;
S using ::std::ftell;
S using ::std::rewind;
S using ::std::clearerr;
S using ::std::feof;
S using ::std::ferror;
S using ::std::perror;
S using ::std::_fisatty;
S using ::std::__use_no_semihosting_swi;
S using ::std::__use_no_semihosting;
N #endif
N
N#endif /* ndef __stdio_h */
N
N/* end of stdio.h */
N
L 2 "..\src\app\main.c" 2
N#include <string.h>
L 1 "C:\Keil_v5\ARM\ARMCC\Bin\..\include\string.h" 1
N/* string.h: ANSI 'C' (X3J11 Oct 88) library header, section 4.11 */
N/* Copyright (C) Codemist Ltd., 1988-1993. */
N/* Copyright 1991-1993 ARM Limited. All rights reserved. */
N/* version 0.04 */
N
N/*
N * RCS $Revision$
N * Checkin $Date$
N */
N
N/*
N * string.h declares one type and several functions, and defines one macro
N * useful for manipulating character arrays and other objects treated as
N * character arrays. Various methods are used for determining the lengths of
N * the arrays, but in all cases a char * or void * argument points to the
N * initial (lowest addresses) character of the array. If an array is written
N * beyond the end of an object, the behaviour is undefined.
N */
N
N#ifndef __string_h
N#define __string_h
N#define __ARMCLIB_VERSION 5060037
N
N#define _ARMABI __declspec(__nothrow)
N
N #ifndef __STRING_DECLS
N #define __STRING_DECLS
N
N #undef __CLIBNS
N
N #ifdef __cplusplus
S namespace std {
S #define __CLIBNS std::
S extern "C" {
N #else
N #define __CLIBNS
N #endif /* __cplusplus */
N
N#if defined(__cplusplus) || !defined(__STRICT_ANSI__)
X#if 0L || !0L
N /* unconditional in C++ and non-strict C for consistency of debug info */
N #if __sizeof_ptr == 8
X #if 4 == 8
S typedef unsigned long size_t; /* see <stddef.h> */
N #else
N typedef unsigned int size_t; /* see <stddef.h> */
N #endif
N#elif !defined(__size_t)
X#elif !0L
S #define __size_t 1
S #if __sizeof_ptr == 8
S typedef unsigned long size_t; /* see <stddef.h> */
S #else
S typedef unsigned int size_t; /* see <stddef.h> */
S #endif
N#endif
N
N#undef NULL
N#define NULL 0 /* see <stddef.h> */
N
Nextern _ARMABI void *memcpy(void * __restrict /*s1*/,
Xextern __declspec(__nothrow) void *memcpy(void * __restrict ,
N const void * __restrict /*s2*/, size_t /*n*/) __attribute__((__nonnull__(1,2)));
N /*
N * copies n characters from the object pointed to by s2 into the object
N * pointed to by s1. If copying takes place between objects that overlap,
N * the behaviour is undefined.
N * Returns: the value of s1.
N */
Nextern _ARMABI void *memmove(void * /*s1*/,
Xextern __declspec(__nothrow) void *memmove(void * ,
N const void * /*s2*/, size_t /*n*/) __attribute__((__nonnull__(1,2)));
N /*
N * copies n characters from the object pointed to by s2 into the object
N * pointed to by s1. Copying takes place as if the n characters from the
N * object pointed to by s2 are first copied into a temporary array of n
N * characters that does not overlap the objects pointed to by s1 and s2,
N * and then the n characters from the temporary array are copied into the
N * object pointed to by s1.
N * Returns: the value of s1.
N */
Nextern _ARMABI char *strcpy(char * __restrict /*s1*/, const char * __restrict /*s2*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) char *strcpy(char * __restrict , const char * __restrict ) __attribute__((__nonnull__(1,2)));
N /*
N * copies the string pointed to by s2 (including the terminating nul
N * character) into the array pointed to by s1. If copying takes place
N * between objects that overlap, the behaviour is undefined.
N * Returns: the value of s1.
N */
Nextern _ARMABI char *strncpy(char * __restrict /*s1*/, const char * __restrict /*s2*/, size_t /*n*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) char *strncpy(char * __restrict , const char * __restrict , size_t ) __attribute__((__nonnull__(1,2)));
N /*
N * copies not more than n characters (characters that follow a null
N * character are not copied) from the array pointed to by s2 into the array
N * pointed to by s1. If copying takes place between objects that overlap,
N * the behaviour is undefined.
N * Returns: the value of s1.
N */
N
Nextern _ARMABI char *strcat(char * __restrict /*s1*/, const char * __restrict /*s2*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) char *strcat(char * __restrict , const char * __restrict ) __attribute__((__nonnull__(1,2)));
N /*
N * appends a copy of the string pointed to by s2 (including the terminating
N * null character) to the end of the string pointed to by s1. The initial
N * character of s2 overwrites the null character at the end of s1.
N * Returns: the value of s1.
N */
Nextern _ARMABI char *strncat(char * __restrict /*s1*/, const char * __restrict /*s2*/, size_t /*n*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) char *strncat(char * __restrict , const char * __restrict , size_t ) __attribute__((__nonnull__(1,2)));
N /*
N * appends not more than n characters (a null character and characters that
N * follow it are not appended) from the array pointed to by s2 to the end of
N * the string pointed to by s1. The initial character of s2 overwrites the
N * null character at the end of s1. A terminating null character is always
N * appended to the result.
N * Returns: the value of s1.
N */
N
N/*
N * The sign of a nonzero value returned by the comparison functions is
N * determined by the sign of the difference between the values of the first
N * pair of characters (both interpreted as unsigned char) that differ in the
N * objects being compared.
N */
N
Nextern _ARMABI int memcmp(const void * /*s1*/, const void * /*s2*/, size_t /*n*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int memcmp(const void * , const void * , size_t ) __attribute__((__nonnull__(1,2)));
N /*
N * compares the first n characters of the object pointed to by s1 to the
N * first n characters of the object pointed to by s2.
N * Returns: an integer greater than, equal to, or less than zero, according
N * as the object pointed to by s1 is greater than, equal to, or
N * less than the object pointed to by s2.
N */
Nextern _ARMABI int strcmp(const char * /*s1*/, const char * /*s2*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int strcmp(const char * , const char * ) __attribute__((__nonnull__(1,2)));
N /*
N * compares the string pointed to by s1 to the string pointed to by s2.
N * Returns: an integer greater than, equal to, or less than zero, according
N * as the string pointed to by s1 is greater than, equal to, or
N * less than the string pointed to by s2.
N */
Nextern _ARMABI int strncmp(const char * /*s1*/, const char * /*s2*/, size_t /*n*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int strncmp(const char * , const char * , size_t ) __attribute__((__nonnull__(1,2)));
N /*
N * compares not more than n characters (characters that follow a null
N * character are not compared) from the array pointed to by s1 to the array
N * pointed to by s2.
N * Returns: an integer greater than, equal to, or less than zero, according
N * as the string pointed to by s1 is greater than, equal to, or
N * less than the string pointed to by s2.
N */
Nextern _ARMABI int strcasecmp(const char * /*s1*/, const char * /*s2*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int strcasecmp(const char * , const char * ) __attribute__((__nonnull__(1,2)));
N /*
N * compares the string pointed to by s1 to the string pointed to by s2,
N * case-insensitively as defined by the current locale.
N * Returns: an integer greater than, equal to, or less than zero, according
N * as the string pointed to by s1 is greater than, equal to, or
N * less than the string pointed to by s2.
N */
Nextern _ARMABI int strncasecmp(const char * /*s1*/, const char * /*s2*/, size_t /*n*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int strncasecmp(const char * , const char * , size_t ) __attribute__((__nonnull__(1,2)));
N /*
N * compares not more than n characters (characters that follow a null
N * character are not compared) from the array pointed to by s1 to the array
N * pointed to by s2, case-insensitively as defined by the current locale.
N * Returns: an integer greater than, equal to, or less than zero, according
N * as the string pointed to by s1 is greater than, equal to, or
N * less than the string pointed to by s2.
N */
Nextern _ARMABI int strcoll(const char * /*s1*/, const char * /*s2*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) int strcoll(const char * , const char * ) __attribute__((__nonnull__(1,2)));
N /*
N * compares the string pointed to by s1 to the string pointed to by s2, both
N * interpreted as appropriate to the LC_COLLATE category of the current
N * locale.
N * Returns: an integer greater than, equal to, or less than zero, according
N * as the string pointed to by s1 is greater than, equal to, or
N * less than the string pointed to by s2 when both are interpreted
N * as appropriate to the current locale.
N */
N
Nextern _ARMABI size_t strxfrm(char * __restrict /*s1*/, const char * __restrict /*s2*/, size_t /*n*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) size_t strxfrm(char * __restrict , const char * __restrict , size_t ) __attribute__((__nonnull__(2)));
N /*
N * transforms the string pointed to by s2 and places the resulting string
N * into the array pointed to by s1. The transformation function is such that
N * if the strcmp function is applied to two transformed strings, it returns
N * a value greater than, equal to or less than zero, corresponding to the
N * result of the strcoll function applied to the same two original strings.
N * No more than n characters are placed into the resulting array pointed to
N * by s1, including the terminating null character. If n is zero, s1 is
N * permitted to be a null pointer. If copying takes place between objects
N * that overlap, the behaviour is undefined.
N * Returns: The length of the transformed string is returned (not including
N * the terminating null character). If the value returned is n or
N * more, the contents of the array pointed to by s1 are
N * indeterminate.
N */
N
N
N#ifdef __cplusplus
Sextern _ARMABI const void *memchr(const void * /*s*/, int /*c*/, size_t /*n*/) __attribute__((__nonnull__(1)));
Sextern "C++" void *memchr(void * __s, int __c, size_t __n) __attribute__((__nonnull__(1)));
Sextern "C++" inline void *memchr(void * __s, int __c, size_t __n)
S { return const_cast<void *>(memchr(const_cast<const void *>(__s), __c, __n)); }
N#else
Nextern _ARMABI void *memchr(const void * /*s*/, int /*c*/, size_t /*n*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) void *memchr(const void * , int , size_t ) __attribute__((__nonnull__(1)));
N#endif
N /*
N * locates the first occurence of c (converted to an unsigned char) in the
N * initial n characters (each interpreted as unsigned char) of the object
N * pointed to by s.
N * Returns: a pointer to the located character, or a null pointer if the
N * character does not occur in the object.
N */
N
N#ifdef __cplusplus
Sextern _ARMABI const char *strchr(const char * /*s*/, int /*c*/) __attribute__((__nonnull__(1)));
Sextern "C++" char *strchr(char * __s, int __c) __attribute__((__nonnull__(1)));
Sextern "C++" inline char *strchr(char * __s, int __c)
S { return const_cast<char *>(strchr(const_cast<const char *>(__s), __c)); }
N#else
Nextern _ARMABI char *strchr(const char * /*s*/, int /*c*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) char *strchr(const char * , int ) __attribute__((__nonnull__(1)));
N#endif
N /*
N * locates the first occurence of c (converted to an char) in the string
N * pointed to by s (including the terminating null character).
N * Returns: a pointer to the located character, or a null pointer if the
N * character does not occur in the string.
N */
N
Nextern _ARMABI size_t strcspn(const char * /*s1*/, const char * /*s2*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) size_t strcspn(const char * , const char * ) __attribute__((__nonnull__(1,2)));
N /*
N * computes the length of the initial segment of the string pointed to by s1
N * which consists entirely of characters not from the string pointed to by
N * s2. The terminating null character is not considered part of s2.
N * Returns: the length of the segment.
N */
N
N#ifdef __cplusplus
Sextern _ARMABI const char *strpbrk(const char * /*s1*/, const char * /*s2*/) __attribute__((__nonnull__(1,2)));
Sextern "C++" char *strpbrk(char * __s1, const char * __s2) __attribute__((__nonnull__(1,2)));
Sextern "C++" inline char *strpbrk(char * __s1, const char * __s2)
S { return const_cast<char *>(strpbrk(const_cast<const char *>(__s1), __s2)); }
N#else
Nextern _ARMABI char *strpbrk(const char * /*s1*/, const char * /*s2*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) char *strpbrk(const char * , const char * ) __attribute__((__nonnull__(1,2)));
N#endif
N /*
N * locates the first occurence in the string pointed to by s1 of any
N * character from the string pointed to by s2.
N * Returns: returns a pointer to the character, or a null pointer if no
N * character form s2 occurs in s1.
N */
N
N#ifdef __cplusplus
Sextern _ARMABI const char *strrchr(const char * /*s*/, int /*c*/) __attribute__((__nonnull__(1)));
Sextern "C++" char *strrchr(char * __s, int __c) __attribute__((__nonnull__(1)));
Sextern "C++" inline char *strrchr(char * __s, int __c)
S { return const_cast<char *>(strrchr(const_cast<const char *>(__s), __c)); }
N#else
Nextern _ARMABI char *strrchr(const char * /*s*/, int /*c*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) char *strrchr(const char * , int ) __attribute__((__nonnull__(1)));
N#endif
N /*
N * locates the last occurence of c (converted to a char) in the string
N * pointed to by s. The terminating null character is considered part of
N * the string.
N * Returns: returns a pointer to the character, or a null pointer if c does
N * not occur in the string.
N */
N
Nextern _ARMABI size_t strspn(const char * /*s1*/, const char * /*s2*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) size_t strspn(const char * , const char * ) __attribute__((__nonnull__(1,2)));
N /*
N * computes the length of the initial segment of the string pointed to by s1
N * which consists entirely of characters from the string pointed to by S2
N * Returns: the length of the segment.
N */
N
N#ifdef __cplusplus
Sextern _ARMABI const char *strstr(const char * /*s1*/, const char * /*s2*/) __attribute__((__nonnull__(1,2)));
Sextern "C++" char *strstr(char * __s1, const char * __s2) __attribute__((__nonnull__(1,2)));
Sextern "C++" inline char *strstr(char * __s1, const char * __s2)
S { return const_cast<char *>(strstr(const_cast<const char *>(__s1), __s2)); }
N#else
Nextern _ARMABI char *strstr(const char * /*s1*/, const char * /*s2*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) char *strstr(const char * , const char * ) __attribute__((__nonnull__(1,2)));
N#endif
N /*
N * locates the first occurence in the string pointed to by s1 of the
N * sequence of characters (excluding the terminating null character) in the
N * string pointed to by s2.
N * Returns: a pointer to the located string, or a null pointer if the string
N * is not found.
N */
N
Nextern _ARMABI char *strtok(char * __restrict /*s1*/, const char * __restrict /*s2*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) char *strtok(char * __restrict , const char * __restrict ) __attribute__((__nonnull__(2)));
Nextern _ARMABI char *_strtok_r(char * /*s1*/, const char * /*s2*/, char ** /*ptr*/) __attribute__((__nonnull__(2,3)));
Xextern __declspec(__nothrow) char *_strtok_r(char * , const char * , char ** ) __attribute__((__nonnull__(2,3)));
N#ifndef __STRICT_ANSI__
Nextern _ARMABI char *strtok_r(char * /*s1*/, const char * /*s2*/, char ** /*ptr*/) __attribute__((__nonnull__(2,3)));
Xextern __declspec(__nothrow) char *strtok_r(char * , const char * , char ** ) __attribute__((__nonnull__(2,3)));
N#endif
N /*
N * A sequence of calls to the strtok function breaks the string pointed to
N * by s1 into a sequence of tokens, each of which is delimited by a
N * character from the string pointed to by s2. The first call in the
N * sequence has s1 as its first argument, and is followed by calls with a
N * null pointer as their first argument. The separator string pointed to by
N * s2 may be different from call to call.
N * The first call in the sequence searches for the first character that is
N * not contained in the current separator string s2. If no such character
N * is found, then there are no tokens in s1 and the strtok function returns
N * a null pointer. If such a character is found, it is the start of the
N * first token.
N * The strtok function then searches from there for a character that is
N * contained in the current separator string. If no such character is found,
N * the current token extends to the end of the string pointed to by s1, and
N * subsequent searches for a token will fail. If such a character is found,
N * it is overwritten by a null character, which terminates the current
N * token. The strtok function saves a pointer to the following character,
N * from which the next search for a token will start.
N * Each subsequent call, with a null pointer as the value for the first
N * argument, starts searching from the saved pointer and behaves as
N * described above.
N * Returns: pointer to the first character of a token, or a null pointer if
N * there is no token.
N *
N * strtok_r() is a common extension which works exactly like
N * strtok(), but instead of storing its state in a hidden
N * library variable, requires the user to pass in a pointer to a
N * char * variable which will be used instead. Any sequence of
N * calls to strtok_r() passing the same char ** pointer should
N * behave exactly like the corresponding sequence of calls to
N * strtok(). This means that strtok_r() can safely be used in
N * multi-threaded programs, and also that you can tokenise two
N * strings in parallel.
N */
N
Nextern _ARMABI void *memset(void * /*s*/, int /*c*/, size_t /*n*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) void *memset(void * , int , size_t ) __attribute__((__nonnull__(1)));
N /*
N * copies the value of c (converted to an unsigned char) into each of the
N * first n charactes of the object pointed to by s.
N * Returns: the value of s.
N */
Nextern _ARMABI char *strerror(int /*errnum*/);
Xextern __declspec(__nothrow) char *strerror(int );
N /*
N * maps the error number in errnum to an error message string.
N * Returns: a pointer to the string, the contents of which are
N * implementation-defined. The array pointed to shall not be
N * modified by the program, but may be overwritten by a
N * subsequent call to the strerror function.
N */
Nextern _ARMABI size_t strlen(const char * /*s*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) size_t strlen(const char * ) __attribute__((__nonnull__(1)));
N /*
N * computes the length of the string pointed to by s.
N * Returns: the number of characters that precede the terminating null
N * character.
N */
N
Nextern _ARMABI size_t strlcpy(char * /*dst*/, const char * /*src*/, size_t /*len*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) size_t strlcpy(char * , const char * , size_t ) __attribute__((__nonnull__(1,2)));
N /*
N * copies the string src into the string dst, using no more than
N * len bytes of dst. Always null-terminates dst _within the
N * length len (i.e. will copy at most len-1 bytes of string plus
N * a NUL), unless len is actually zero.
N *
N * Return value is the length of the string that _would_ have
N * been written, i.e. the length of src. Thus, the operation
N * succeeded without truncation if and only if ret < len;
N * otherwise, the value in ret tells you how big to make dst if
N * you decide to reallocate it. (That value does _not_ include
N * the NUL.)
N *
N * This is a BSD-derived library extension, which we are
N * permitted to declare in a standard header because ISO defines
N * function names beginning with 'str' as reserved for future
N * expansion of <string.h>.
N */
N
Nextern _ARMABI size_t strlcat(char * /*dst*/, const char * /*src*/, size_t /*len*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) size_t strlcat(char * , const char * , size_t ) __attribute__((__nonnull__(1,2)));
N /*
N * concatenates the string src to the string dst, using no more
N * than len bytes of dst. Always null-terminates dst _within the
N * length len (i.e. will copy at most len-1 bytes of string plus
N * a NUL), unless len is actually zero.
N *
N * Return value is the length of the string that _would_ have
N * been written, i.e. the length of src plus the original length
N * of dst. Thus, the operation succeeded without truncation if
N * and only if ret < len; otherwise, the value in ret tells you
N * how big to make dst if you decide to reallocate it. (That
N * value does _not_ include the NUL.)
N *
N * If no NUL is encountered within the first len bytes of dst,
N * then the length of dst is considered to have been equal to
N * len for the purposes of the return value (as if there were a
N * NUL at dst[len]). Thus, the return value in this case is len
N * + strlen(src).
N *
N * This is a BSD-derived library extension, which we are
N * permitted to declare in a standard header because ISO defines
N * function names beginning with 'str' as reserved for future
N * expansion of <string.h>.
N */
N
Nextern _ARMABI void _membitcpybl(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitcpybl(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitcpybb(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitcpybb(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitcpyhl(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitcpyhl(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitcpyhb(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitcpyhb(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitcpywl(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitcpywl(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitcpywb(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitcpywb(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitmovebl(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitmovebl(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitmovebb(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitmovebb(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitmovehl(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitmovehl(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitmovehb(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitmovehb(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitmovewl(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitmovewl(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
Nextern _ARMABI void _membitmovewb(void * /*dest*/, const void * /*src*/, int /*destoffset*/, int /*srcoffset*/, size_t /*nbits*/) __attribute__((__nonnull__(1,2)));
Xextern __declspec(__nothrow) void _membitmovewb(void * , const void * , int , int , size_t ) __attribute__((__nonnull__(1,2)));
N /*
N * Copies or moves a piece of memory from one place to another,
N * with one-bit granularity. So you can start or finish a copy
N * part way through a byte, and you can copy between regions
N * with different alignment within a byte.
N *
N * All these functions have the same prototype: two void *
N * pointers for destination and source, then two integers
N * giving the bit offset from those pointers, and finally the
N * number of bits to copy.
N *
N * Just like memcpy and memmove, the "cpy" functions copy as
N * fast as they can in the assumption that the memory regions
N * do not overlap, while the "move" functions cope correctly
N * with overlap.
N *
N * Treating memory as a stream of individual bits requires
N * defining a convention about what order those bits are
N * considered to be arranged in. The above functions support
N * multiple conventions:
N *
N * - the "bl" functions consider the unit of memory to be the
N * byte, and consider the bits within each byte to be
N * arranged in little-endian fashion, so that the LSB comes
N * first. (For example, membitcpybl(a,b,0,7,1) would copy
N * the MSB of the byte at b to the LSB of the byte at a.)
N *
N * - the "bb" functions consider the unit of memory to be the
N * byte, and consider the bits within each byte to be
N * arranged in big-endian fashion, so that the MSB comes
N * first.
N *
N * - the "hl" functions consider the unit of memory to be the
N * 16-bit halfword, and consider the bits within each word
N * to be arranged in little-endian fashion.
N *
N * - the "hb" functions consider the unit of memory to be the
N * 16-bit halfword, and consider the bits within each word
N * to be arranged in big-endian fashion.
N *
N * - the "wl" functions consider the unit of memory to be the
N * 32-bit word, and consider the bits within each word to be
N * arranged in little-endian fashion.
N *
N * - the "wb" functions consider the unit of memory to be the
N * 32-bit word, and consider the bits within each word to be
N * arranged in big-endian fashion.
N */
N
N #ifdef __cplusplus
S } /* extern "C" */
S } /* namespace std */
N #endif /* __cplusplus */
N #endif /* __STRING_DECLS */
N
N #ifdef __cplusplus
S #ifndef __STRING_NO_EXPORTS
S using ::std::size_t;
S using ::std::memcpy;
S using ::std::memmove;
S using ::std::strcpy;
S using ::std::strncpy;
S using ::std::strcat;
S using ::std::strncat;
S using ::std::memcmp;
S using ::std::strcmp;
S using ::std::strncmp;
S using ::std::strcasecmp;
S using ::std::strncasecmp;
S using ::std::strcoll;
S using ::std::strxfrm;
S using ::std::memchr;
S using ::std::strchr;
S using ::std::strcspn;
S using ::std::strpbrk;
S using ::std::strrchr;
S using ::std::strspn;
S using ::std::strstr;
S using ::std::strtok;
S#ifndef __STRICT_ANSI__
S using ::std::strtok_r;
S#endif
S using ::std::_strtok_r;
S using ::std::memset;
S using ::std::strerror;
S using ::std::strlen;
S using ::std::strlcpy;
S using ::std::strlcat;
S using ::std::_membitcpybl;
S using ::std::_membitcpybb;
S using ::std::_membitcpyhl;
S using ::std::_membitcpyhb;
S using ::std::_membitcpywl;
S using ::std::_membitcpywb;
S using ::std::_membitmovebl;
S using ::std::_membitmovebb;
S using ::std::_membitmovehl;
S using ::std::_membitmovehb;
S using ::std::_membitmovewl;
S using ::std::_membitmovewb;
S #endif /* __STRING_NO_EXPORTS */
N #endif /* __cplusplus */
N
N#endif
N
N/* end of string.h */
N
L 3 "..\src\app\main.c" 2
N#include <stdlib.h>
L 1 "C:\Keil_v5\ARM\ARMCC\Bin\..\include\stdlib.h" 1
N/* stdlib.h: ANSI draft (X3J11 May 88) library header, section 4.10 */
N/* Copyright (C) Codemist Ltd., 1988-1993. */
N/* Copyright 1991-1998,2014 ARM Limited. All rights reserved. */
N/*
N * RCS $Revision$
N * Checkin $Date$
N * Revising $Author: agrant $
N */
N
N/*
N * stdlib.h declares four types, several general purpose functions,
N * and defines several macros.
N */
N
N#ifndef __stdlib_h
N#define __stdlib_h
N#define __ARMCLIB_VERSION 5060037
N
N#if defined(__clang__) || (defined(__ARMCC_VERSION) && !defined(__STRICT_ANSI__))
X#if 0L || (1L && !0L)
N /* armclang and non-strict armcc allow 'long long' in system headers */
N #define __LONGLONG long long
N#else
S /* strict armcc has '__int64' */
S #define __LONGLONG __int64
N#endif
N
N#define _ARMABI __declspec(__nothrow)
N#define _ARMABI_PURE __declspec(__nothrow) __attribute__((const))
N#define _ARMABI_NORETURN __declspec(__nothrow) __declspec(__noreturn)
N#define _ARMABI_THROW
N
N #ifndef __STDLIB_DECLS
N #define __STDLIB_DECLS
N
N /*
N * Some of these declarations are new in C99. To access them in C++
N * you can use -D__USE_C99_STDLIB (or -D__USE_C99ALL).
N */
N #ifndef __USE_C99_STDLIB
N #if defined(__USE_C99_ALL) || (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__) || (defined(__cplusplus) && 201103L <= __cplusplus)
X #if 0L || (1L && 199901L <= 199901L) || (0L && 201103L <= __cplusplus)
N #define __USE_C99_STDLIB 1
N #endif
N #endif
N
N #undef __CLIBNS
N
N #ifdef __cplusplus
S namespace std {
S #define __CLIBNS ::std::
S extern "C" {
N #else
N #define __CLIBNS
N #endif /* __cplusplus */
N
N#if defined(__cplusplus) || !defined(__STRICT_ANSI__)
X#if 0L || !0L
N /* unconditional in C++ and non-strict C for consistency of debug info */
N #if __sizeof_ptr == 8
X #if 4 == 8
S typedef unsigned long size_t; /* see <stddef.h> */
N #else
N typedef unsigned int size_t; /* see <stddef.h> */
N #endif
N#elif !defined(__size_t)
X#elif !0L
S #define __size_t 1
S #if __sizeof_ptr == 8
S typedef unsigned long size_t; /* see <stddef.h> */
S #else
S typedef unsigned int size_t; /* see <stddef.h> */
S #endif
N#endif
N
N#undef NULL
N#define NULL 0 /* see <stddef.h> */
N
N#ifndef __cplusplus /* wchar_t is a builtin type for C++ */
N #if !defined(__STRICT_ANSI__)
X #if !0L
N /* unconditional in non-strict C for consistency of debug info */
N #if defined(__WCHAR32) || (defined(__ARM_SIZEOF_WCHAR_T) && __ARM_SIZEOF_WCHAR_T == 4)
X #if 0L || (0L && __ARM_SIZEOF_WCHAR_T == 4)
S typedef unsigned int wchar_t; /* see <stddef.h> */
N #else
N typedef unsigned short wchar_t; /* see <stddef.h> */
N #endif
N #elif !defined(__wchar_t)
X #elif !0L
S #define __wchar_t 1
S #if defined(__WCHAR32) || (defined(__ARM_SIZEOF_WCHAR_T) && __ARM_SIZEOF_WCHAR_T == 4)
S typedef unsigned int wchar_t; /* see <stddef.h> */
S #else
S typedef unsigned short wchar_t; /* see <stddef.h> */
S #endif
N #endif
N#endif
N
Ntypedef struct div_t { int quot, rem; } div_t;
N /* type of the value returned by the div function. */
Ntypedef struct ldiv_t { long int quot, rem; } ldiv_t;
N /* type of the value returned by the ldiv function. */
N#if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB
X#if !0L || 1
Ntypedef struct lldiv_t { __LONGLONG quot, rem; } lldiv_t;
Xtypedef struct lldiv_t { long long quot, rem; } lldiv_t;
N /* type of the value returned by the lldiv function. */
N#endif
N
N#ifdef __EXIT_FAILURE
S# define EXIT_FAILURE __EXIT_FAILURE
S /*
S * an integral expression which may be used as an argument to the exit
S * function to return unsuccessful termination status to the host
S * environment.
S */
N#else
N# define EXIT_FAILURE 1 /* unixoid */
N#endif
N#define EXIT_SUCCESS 0
N /*
N * an integral expression which may be used as an argument to the exit
N * function to return successful termination status to the host
N * environment.
N */
N
N /*
N * Defining __USE_ANSI_EXAMPLE_RAND at compile time switches to
N * the example implementation of rand() and srand() provided in
N * the ANSI C standard. This implementation is very poor, but is
N * provided for completeness.
N */
N#ifdef __USE_ANSI_EXAMPLE_RAND
S#define srand _ANSI_srand
S#define rand _ANSI_rand
S#define RAND_MAX 0x7fff
N#else
N#define RAND_MAX 0x7fffffff
N#endif
N /*
N * RAND_MAX: an integral constant expression, the value of which
N * is the maximum value returned by the rand function.
N */
Nextern _ARMABI int __aeabi_MB_CUR_MAX(void);
Xextern __declspec(__nothrow) int __aeabi_MB_CUR_MAX(void);
N#define MB_CUR_MAX ( __aeabi_MB_CUR_MAX() )
N /*
N * a positive integer expression whose value is the maximum number of bytes
N * in a multibyte character for the extended character set specified by the
N * current locale (category LC_CTYPE), and whose value is never greater
N * than MB_LEN_MAX.
N */
N
N /*
N * If the compiler supports signalling nans as per N965 then it
N * will define __SUPPORT_SNAN__, in which case a user may define
N * _WANT_SNAN in order to obtain a compliant version of the strtod
N * family of functions.
N */
N#if defined(__SUPPORT_SNAN__) && defined(_WANT_SNAN)
X#if 0L && 0L
S#pragma import(__use_snan)
N#endif
N
Nextern _ARMABI double atof(const char * /*nptr*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) double atof(const char * ) __attribute__((__nonnull__(1)));
N /*
N * converts the initial part of the string pointed to by nptr to double
N * representation.
N * Returns: the converted value.
N */
Nextern _ARMABI int atoi(const char * /*nptr*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int atoi(const char * ) __attribute__((__nonnull__(1)));
N /*
N * converts the initial part of the string pointed to by nptr to int
N * representation.
N * Returns: the converted value.
N */
Nextern _ARMABI long int atol(const char * /*nptr*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) long int atol(const char * ) __attribute__((__nonnull__(1)));
N /*
N * converts the initial part of the string pointed to by nptr to long int
N * representation.
N * Returns: the converted value.
N */
N#if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB
X#if !0L || 1
Nextern _ARMABI __LONGLONG atoll(const char * /*nptr*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) long long atoll(const char * ) __attribute__((__nonnull__(1)));
N /*
N * converts the initial part of the string pointed to by nptr to
N * long long int representation.
N * Returns: the converted value.
N */
N#endif
N
Nextern _ARMABI double strtod(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) double strtod(const char * __restrict , char ** __restrict ) __attribute__((__nonnull__(1)));
N /*
N * converts the initial part of the string pointed to by nptr to double
N * representation. First it decomposes the input string into three parts:
N * an initial, possibly empty, sequence of white-space characters (as
N * specified by the isspace function), a subject sequence resembling a
N * floating point constant; and a final string of one or more unrecognised
N * characters, including the terminating null character of the input string.
N * Then it attempts to convert the subject sequence to a floating point
N * number, and returns the result. A pointer to the final string is stored
N * in the object pointed to by endptr, provided that endptr is not a null
N * pointer.
N * Returns: the converted value if any. If no conversion could be performed,
N * zero is returned. If the correct value is outside the range of
N * representable values, plus or minus HUGE_VAL is returned
N * (according to the sign of the value), and the value of the macro
N * ERANGE is stored in errno. If the correct value would cause
N * underflow, zero is returned and the value of the macro ERANGE is
N * stored in errno.
N */
N#if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB
X#if !0L || 1
Nextern _ARMABI float strtof(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) float strtof(const char * __restrict , char ** __restrict ) __attribute__((__nonnull__(1)));
Nextern _ARMABI long double strtold(const char * __restrict /*nptr*/, char ** __restrict /*endptr*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) long double strtold(const char * __restrict , char ** __restrict ) __attribute__((__nonnull__(1)));
N /*
N * same as strtod, but return float and long double respectively.
N */
N#endif
Nextern _ARMABI long int strtol(const char * __restrict /*nptr*/,
Xextern __declspec(__nothrow) long int strtol(const char * __restrict ,
N char ** __restrict /*endptr*/, int /*base*/) __attribute__((__nonnull__(1)));
N /*
N * converts the initial part of the string pointed to by nptr to long int
N * representation. First it decomposes the input string into three parts:
N * an initial, possibly empty, sequence of white-space characters (as
N * specified by the isspace function), a subject sequence resembling an
N * integer represented in some radix determined by the value of base, and a
N * final string of one or more unrecognised characters, including the
N * terminating null character of the input string. Then it attempts to
N * convert the subject sequence to an integer, and returns the result.
N * If the value of base is 0, the expected form of the subject sequence is
N * that of an integer constant (described in ANSI Draft, section 3.1.3.2),
N * optionally preceded by a '+' or '-' sign, but not including an integer
N * suffix. If the value of base is between 2 and 36, the expected form of
N * the subject sequence is a sequence of letters and digits representing an
N * integer with the radix specified by base, optionally preceded by a plus
N * or minus sign, but not including an integer suffix. The letters from a
N * (or A) through z (or Z) are ascribed the values 10 to 35; only letters
N * whose ascribed values are less than that of the base are permitted. If
N * the value of base is 16, the characters 0x or 0X may optionally precede
N * the sequence of letters and digits following the sign if present.
N * A pointer to the final string is stored in the object
N * pointed to by endptr, provided that endptr is not a null pointer.
N * Returns: the converted value if any. If no conversion could be performed,
N * zero is returned and nptr is stored in *endptr.
N * If the correct value is outside the range of
N * representable values, LONG_MAX or LONG_MIN is returned
N * (according to the sign of the value), and the value of the
N * macro ERANGE is stored in errno.
N */
Nextern _ARMABI unsigned long int strtoul(const char * __restrict /*nptr*/,
Xextern __declspec(__nothrow) unsigned long int strtoul(const char * __restrict ,
N char ** __restrict /*endptr*/, int /*base*/) __attribute__((__nonnull__(1)));
N /*
N * converts the initial part of the string pointed to by nptr to unsigned
N * long int representation. First it decomposes the input string into three
N * parts: an initial, possibly empty, sequence of white-space characters (as
N * determined by the isspace function), a subject sequence resembling an
N * unsigned integer represented in some radix determined by the value of
N * base, and a final string of one or more unrecognised characters,
N * including the terminating null character of the input string. Then it
N * attempts to convert the subject sequence to an unsigned integer, and
N * returns the result. If the value of base is zero, the expected form of
N * the subject sequence is that of an integer constant (described in ANSI
N * Draft, section 3.1.3.2), optionally preceded by a '+' or '-' sign, but
N * not including an integer suffix. If the value of base is between 2 and
N * 36, the expected form of the subject sequence is a sequence of letters
N * and digits representing an integer with the radix specified by base,
N * optionally preceded by a '+' or '-' sign, but not including an integer
N * suffix. The letters from a (or A) through z (or Z) stand for the values
N * 10 to 35; only letters whose ascribed values are less than that of the
N * base are permitted. If the value of base is 16, the characters 0x or 0X
N * may optionally precede the sequence of letters and digits following the
N * sign, if present. A pointer to the final string is stored in the object
N * pointed to by endptr, provided that endptr is not a null pointer.
N * Returns: the converted value if any. If no conversion could be performed,
N * zero is returned and nptr is stored in *endptr.
N * If the correct value is outside the range of
N * representable values, ULONG_MAX is returned, and the value of
N * the macro ERANGE is stored in errno.
N */
N
N/* C90 reserves all names beginning with 'str' */
Nextern _ARMABI __LONGLONG strtoll(const char * __restrict /*nptr*/,
Xextern __declspec(__nothrow) long long strtoll(const char * __restrict ,
N char ** __restrict /*endptr*/, int /*base*/)
N __attribute__((__nonnull__(1)));
N /*
N * as strtol but returns a long long int value. If the correct value is
N * outside the range of representable values, LLONG_MAX or LLONG_MIN is
N * returned (according to the sign of the value), and the value of the
N * macro ERANGE is stored in errno.
N */
Nextern _ARMABI unsigned __LONGLONG strtoull(const char * __restrict /*nptr*/,
Xextern __declspec(__nothrow) unsigned long long strtoull(const char * __restrict ,
N char ** __restrict /*endptr*/, int /*base*/)
N __attribute__((__nonnull__(1)));
N /*
N * as strtoul but returns an unsigned long long int value. If the correct
N * value is outside the range of representable values, ULLONG_MAX is returned,
N * and the value of the macro ERANGE is stored in errno.
N */
N
Nextern _ARMABI int rand(void);
Xextern __declspec(__nothrow) int rand(void);
N /*
N * Computes a sequence of pseudo-random integers in the range 0 to RAND_MAX.
N * Uses an additive generator (Mitchell & Moore) of the form:
N * Xn = (X[n-24] + X[n-55]) MOD 2^31
N * This is described in section 3.2.2 of Knuth, vol 2. It's period is
N * in excess of 2^55 and its randomness properties, though unproven, are
N * conjectured to be good. Empirical testing since 1958 has shown no flaws.
N * Returns: a pseudo-random integer.
N */
Nextern _ARMABI void srand(unsigned int /*seed*/);
Xextern __declspec(__nothrow) void srand(unsigned int );
N /*
N * uses its argument as a seed for a new sequence of pseudo-random numbers
N * to be returned by subsequent calls to rand. If srand is then called with
N * the same seed value, the sequence of pseudo-random numbers is repeated.
N * If rand is called before any calls to srand have been made, the same
N * sequence is generated as when srand is first called with a seed value
N * of 1.
N */
N
Nstruct _rand_state { int __x[57]; };
Nextern _ARMABI int _rand_r(struct _rand_state *);
Xextern __declspec(__nothrow) int _rand_r(struct _rand_state *);
Nextern _ARMABI void _srand_r(struct _rand_state *, unsigned int);
Xextern __declspec(__nothrow) void _srand_r(struct _rand_state *, unsigned int);
Nstruct _ANSI_rand_state { int __x[1]; };
Nextern _ARMABI int _ANSI_rand_r(struct _ANSI_rand_state *);
Xextern __declspec(__nothrow) int _ANSI_rand_r(struct _ANSI_rand_state *);
Nextern _ARMABI void _ANSI_srand_r(struct _ANSI_rand_state *, unsigned int);
Xextern __declspec(__nothrow) void _ANSI_srand_r(struct _ANSI_rand_state *, unsigned int);
N /*
N * Re-entrant variants of both flavours of rand, which operate on
N * an explicitly supplied state buffer.
N */
N
Nextern _ARMABI void *calloc(size_t /*nmemb*/, size_t /*size*/);
Xextern __declspec(__nothrow) void *calloc(size_t , size_t );
N /*
N * allocates space for an array of nmemb objects, each of whose size is
N * 'size'. The space is initialised to all bits zero.
N * Returns: either a null pointer or a pointer to the allocated space.
N */
Nextern _ARMABI void free(void * /*ptr*/);
Xextern __declspec(__nothrow) void free(void * );
N /*
N * causes the space pointed to by ptr to be deallocated (i.e., made
N * available for further allocation). If ptr is a null pointer, no action
N * occurs. Otherwise, if ptr does not match a pointer earlier returned by
N * calloc, malloc or realloc or if the space has been deallocated by a call
N * to free or realloc, the behaviour is undefined.
N */
Nextern _ARMABI void *malloc(size_t /*size*/);
Xextern __declspec(__nothrow) void *malloc(size_t );
N /*
N * allocates space for an object whose size is specified by 'size' and whose
N * value is indeterminate.
N * Returns: either a null pointer or a pointer to the allocated space.
N */
Nextern _ARMABI void *realloc(void * /*ptr*/, size_t /*size*/);
Xextern __declspec(__nothrow) void *realloc(void * , size_t );
N /*
N * changes the size of the object pointed to by ptr to the size specified by
N * size. The contents of the object shall be unchanged up to the lesser of
N * the new and old sizes. If the new size is larger, the value of the newly
N * allocated portion of the object is indeterminate. If ptr is a null
N * pointer, the realloc function behaves like a call to malloc for the
N * specified size. Otherwise, if ptr does not match a pointer earlier
N * returned by calloc, malloc or realloc, or if the space has been
N * deallocated by a call to free or realloc, the behaviour is undefined.
N * If the space cannot be allocated, the object pointed to by ptr is
N * unchanged. If size is zero and ptr is not a null pointer, the object it
N * points to is freed.
N * Returns: either a null pointer or a pointer to the possibly moved
N * allocated space.
N */
N#if !defined(__STRICT_ANSI__)
X#if !0L
Nextern _ARMABI int posix_memalign(void ** /*ret*/, size_t /*alignment*/, size_t /*size*/);
Xextern __declspec(__nothrow) int posix_memalign(void ** , size_t , size_t );
N /*
N * allocates space for an object of size 'size', aligned to a
N * multiple of 'alignment' (which must be a power of two and at
N * least 4).
N *
N * On success, a pointer to the allocated object is stored in
N * *ret, and zero is returned. On failure, the return value is
N * either ENOMEM (allocation failed because no suitable piece of
N * memory was available) or EINVAL (the 'alignment' parameter was
N * invalid).
N */
N#endif
Ntypedef int (*__heapprt)(void *, char const *, ...);
Nextern _ARMABI void __heapstats(int (* /*dprint*/)(void * /*param*/,
Xextern __declspec(__nothrow) void __heapstats(int (* )(void * ,
N char const * /*format*/, ...),
N void * /*param*/) __attribute__((__nonnull__(1)));
N /*
N * reports current heap statistics (eg. number of free blocks in
N * the free-list). Output is as implementation-defined free-form
N * text, provided via the dprint function. `param' gives an
N * extra data word to pass to dprint. You can call
N * __heapstats(fprintf,stdout) by casting fprintf to the above
N * function type; the typedef `__heapprt' is provided for this
N * purpose.
N *
N * `dprint' will not be called while the heap is being examined,
N * so it can allocate memory itself without trouble.
N */
Nextern _ARMABI int __heapvalid(int (* /*dprint*/)(void * /*param*/,
Xextern __declspec(__nothrow) int __heapvalid(int (* )(void * ,
N char const * /*format*/, ...),
N void * /*param*/, int /*verbose*/) __attribute__((__nonnull__(1)));
N /*
N * performs a consistency check on the heap. Errors are reported
N * through dprint, like __heapstats. If `verbose' is nonzero,
N * full diagnostic information on the heap state is printed out.
N *
N * This routine probably won't work if the heap isn't a
N * contiguous chunk (for example, if __user_heap_extend has been
N * overridden).
N *
N * `dprint' may be called while the heap is being examined or
N * even in an invalid state, so it must perform no memory
N * allocation. In particular, if `dprint' calls (or is) a stdio
N * function, the stream it outputs to must already have either
N * been written to or been setvbuf'ed, or else the system will
N * allocate buffer space for it on the first call to dprint.
N */
Nextern _ARMABI_NORETURN void abort(void);
Xextern __declspec(__nothrow) __declspec(__noreturn) void abort(void);
N /*
N * causes abnormal program termination to occur, unless the signal SIGABRT
N * is being caught and the signal handler does not return. Whether open
N * output streams are flushed or open streams are closed or temporary
N * files removed is implementation-defined.
N * An implementation-defined form of the status 'unsuccessful termination'
N * is returned to the host environment by means of a call to
N * raise(SIGABRT).
N */
N
Nextern _ARMABI int atexit(void (* /*func*/)(void)) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) int atexit(void (* )(void)) __attribute__((__nonnull__(1)));
N /*
N * registers the function pointed to by func, to be called without its
N * arguments at normal program termination. It is possible to register at
N * least 32 functions.
N * Returns: zero if the registration succeeds, nonzero if it fails.
N */
N#if defined(__EDG__) && !defined(__GNUC__)
X#if 1L && !1L
S#define __LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE
N#endif
N#if defined(__cplusplus) && defined(__LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE)
X#if 0L && 0L
S /* atexit that takes a ptr to a function with C++ linkage
S * but not in GNU mode
S */
S typedef void (* __C_exitfuncptr)();
S extern "C++"
S inline int atexit(void (* __func)()) {
S return atexit((__C_exitfuncptr)__func);
S }
N#endif
N
N
Nextern _ARMABI_NORETURN void exit(int /*status*/);
Xextern __declspec(__nothrow) __declspec(__noreturn) void exit(int );
N /*
N * causes normal program termination to occur. If more than one call to the
N * exit function is executed by a program, the behaviour is undefined.
N * First, all functions registered by the atexit function are called, in the
N * reverse order of their registration.
N * Next, all open output streams are flushed, all open streams are closed,
N * and all files created by the tmpfile function are removed.
N * Finally, control is returned to the host environment. If the value of
N * status is zero or EXIT_SUCCESS, an implementation-defined form of the
N * status 'successful termination' is returned. If the value of status is
N * EXIT_FAILURE, an implementation-defined form of the status
N * 'unsuccessful termination' is returned. Otherwise the status returned
N * is implementation-defined.
N */
N
Nextern _ARMABI_NORETURN void _Exit(int /*status*/);
Xextern __declspec(__nothrow) __declspec(__noreturn) void _Exit(int );
N /*
N * causes normal program termination to occur. No functions registered
N * by the atexit function are called.
N * In this implementation, all open output streams are flushed, all
N * open streams are closed, and all files created by the tmpfile function
N * are removed.
N * Control is returned to the host environment. The status returned to
N * the host environment is determined in the same way as for 'exit'.
N */
N
Nextern _ARMABI char *getenv(const char * /*name*/) __attribute__((__nonnull__(1)));
Xextern __declspec(__nothrow) char *getenv(const char * ) __attribute__((__nonnull__(1)));
N /*
N * searches the environment list, provided by the host environment, for a
N * string that matches the string pointed to by name. The set of environment
N * names and the method for altering the environment list are
N * implementation-defined.
N * Returns: a pointer to a string associated with the matched list member.
N * The array pointed to shall not be modified by the program, but
N * may be overwritten by a subsequent call to the getenv function.
N * If the specified name cannot be found, a null pointer is
N * returned.
N */
N
Nextern _ARMABI int system(const char * /*string*/);
Xextern __declspec(__nothrow) int system(const char * );
N /*
N * passes the string pointed to by string to the host environment to be
N * executed by a command processor in an implementation-defined manner.
N * A null pointer may be used for string, to inquire whether a command
N * processor exists.
N *
N * Returns: If the argument is a null pointer, the system function returns
N * non-zero only if a command processor is available. If the
N * argument is not a null pointer, the system function returns an
N * implementation-defined value.
N */
N
Nextern _ARMABI_THROW void *bsearch(const void * /*key*/, const void * /*base*/,
Xextern void *bsearch(const void * , const void * ,
N size_t /*nmemb*/, size_t /*size*/,
N int (* /*compar*/)(const void *, const void *)) __attribute__((__nonnull__(1,2,5)));
N /*
N * searches an array of nmemb objects, the initial member of which is
N * pointed to by base, for a member that matches the object pointed to by
N * key. The size of each member of the array is specified by size.
N * The contents of the array shall be in ascending sorted order according to
N * a comparison function pointed to by compar, which is called with two
N * arguments that point to the key object and to an array member, in that
N * order. The function shall return an integer less than, equal to, or
N * greater than zero if the key object is considered, respectively, to be
N * less than, to match, or to be greater than the array member.
N * Returns: a pointer to a matching member of the array, or a null pointer
N * if no match is found. If two members compare as equal, which
N * member is matched is unspecified.
N */
N#if defined(__cplusplus) && defined(__LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE)
X#if 0L && 0L
S /* bsearch that takes a ptr to a function with C++ linkage
S * but not in GNU mode
S */
S typedef int (* __C_compareprocptr)(const void *, const void *);
S extern "C++"
S void *bsearch(const void * __key, const void * __base,
S size_t __nmemb, size_t __size,
S int (* __compar)(const void *, const void *)) __attribute__((__nonnull__(1,2,5)));
S extern "C++"
S inline void *bsearch(const void * __key, const void * __base,
S size_t __nmemb, size_t __size,
S int (* __compar)(const void *, const void *)) {
S return bsearch(__key, __base, __nmemb, __size, (__C_compareprocptr)__compar);
S }
N#endif
N
N
Nextern _ARMABI_THROW void qsort(void * /*base*/, size_t /*nmemb*/, size_t /*size*/,
Xextern void qsort(void * , size_t , size_t ,
N int (* /*compar*/)(const void *, const void *)) __attribute__((__nonnull__(1,4)));
N /*
N * sorts an array of nmemb objects, the initial member of which is pointed
N * to by base. The size of each object is specified by size.
N * The contents of the array shall be in ascending order according to a
N * comparison function pointed to by compar, which is called with two
N * arguments that point to the objects being compared. The function shall
N * return an integer less than, equal to, or greater than zero if the first
N * argument is considered to be respectively less than, equal to, or greater
N * than the second. If two members compare as equal, their order in the
N * sorted array is unspecified.
N */
N
N#if defined(__cplusplus) && defined(__LANGUAGE_LINKAGE_CHANGES_FUNCTION_TYPE)
X#if 0L && 0L
S /* qsort that takes a ptr to a function with C++ linkage
S * but not in GNU mode
S */
S extern "C++"
S void qsort(void * __base, size_t __nmemb, size_t __size,
S int (* __compar)(const void *, const void *)) __attribute__((__nonnull__(1,4)));
S extern "C++"
S inline void qsort(void * __base, size_t __nmemb, size_t __size,
S int (* __compar)(const void *, const void *)) {
S qsort(__base, __nmemb, __size, (__C_compareprocptr)__compar);
S }
N#endif
N
Nextern _ARMABI_PURE int abs(int /*j*/);
Xextern __declspec(__nothrow) __attribute__((const)) int abs(int );
N /*
N * computes the absolute value of an integer j. If the result cannot be
N * represented, the behaviour is undefined.
N * Returns: the absolute value.
N */
N
Nextern _ARMABI_PURE div_t div(int /*numer*/, int /*denom*/);
Xextern __declspec(__nothrow) __attribute__((const)) div_t div(int , int );
N /*
N * computes the quotient and remainder of the division of the numerator
N * numer by the denominator denom. If the division is inexact, the resulting
N * quotient is the integer of lesser magnitude that is the nearest to the
N * algebraic quotient. If the result cannot be represented, the behaviour is
N * undefined; otherwise, quot * denom + rem shall equal numer.
N * Returns: a structure of type div_t, comprising both the quotient and the
N * remainder. the structure shall contain the following members,
N * in either order.
N * int quot; int rem;
N */
Nextern _ARMABI_PURE long int labs(long int /*j*/);
Xextern __declspec(__nothrow) __attribute__((const)) long int labs(long int );
N /*
N * computes the absolute value of an long integer j. If the result cannot be
N * represented, the behaviour is undefined.
N * Returns: the absolute value.
N */
N#ifdef __cplusplus
S extern "C++" inline _ARMABI_PURE long abs(long int x) { return labs(x); }
N#endif
N
Nextern _ARMABI_PURE ldiv_t ldiv(long int /*numer*/, long int /*denom*/);
Xextern __declspec(__nothrow) __attribute__((const)) ldiv_t ldiv(long int , long int );
N /*
N * computes the quotient and remainder of the division of the numerator
N * numer by the denominator denom. If the division is inexact, the sign of
N * the resulting quotient is that of the algebraic quotient, and the
N * magnitude of the resulting quotient is the largest integer less than the
N * magnitude of the algebraic quotient. If the result cannot be represented,
N * the behaviour is undefined; otherwise, quot * denom + rem shall equal
N * numer.
N * Returns: a structure of type ldiv_t, comprising both the quotient and the
N * remainder. the structure shall contain the following members,
N * in either order.
N * long int quot; long int rem;
N */
N#ifdef __cplusplus
S extern "C++" inline _ARMABI_PURE ldiv_t div(long int __numer, long int __denom) {
S return ldiv(__numer, __denom);
S }
N#endif
N
N#if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB
X#if !0L || 1
Nextern _ARMABI_PURE __LONGLONG llabs(__LONGLONG /*j*/);
Xextern __declspec(__nothrow) __attribute__((const)) long long llabs(long long );
N /*
N * computes the absolute value of a long long integer j. If the
N * result cannot be represented, the behaviour is undefined.
N * Returns: the absolute value.
N */
N#ifdef __cplusplus
S extern "C++" inline _ARMABI_PURE __LONGLONG abs(__LONGLONG x) { return llabs(x); }
N#endif
N
Nextern _ARMABI_PURE lldiv_t lldiv(__LONGLONG /*numer*/, __LONGLONG /*denom*/);
Xextern __declspec(__nothrow) __attribute__((const)) lldiv_t lldiv(long long , long long );
N /*
N * computes the quotient and remainder of the division of the numerator
N * numer by the denominator denom. If the division is inexact, the sign of
N * the resulting quotient is that of the algebraic quotient, and the
N * magnitude of the resulting quotient is the largest integer less than the
N * magnitude of the algebraic quotient. If the result cannot be represented,
N * the behaviour is undefined; otherwise, quot * denom + rem shall equal
N * numer.
N * Returns: a structure of type lldiv_t, comprising both the quotient and the
N * remainder. the structure shall contain the following members,
N * in either order.
N * long long quot; long long rem;
N */
N#ifdef __cplusplus
S extern "C++" inline _ARMABI_PURE lldiv_t div(__LONGLONG __numer, __LONGLONG __denom) {
S return lldiv(__numer, __denom);
S }
N#endif
N#endif
N
N#if !(__ARM_NO_DEPRECATED_FUNCTIONS)
N/*
N * ARM real-time divide functions for guaranteed performance
N */
Ntypedef struct __sdiv32by16 { int quot, rem; } __sdiv32by16;
Ntypedef struct __udiv32by16 { unsigned int quot, rem; } __udiv32by16;
N /* used int so that values return in separate regs, although 16-bit */
Ntypedef struct __sdiv64by32 { int rem, quot; } __sdiv64by32;
N
N__value_in_regs extern _ARMABI_PURE __sdiv32by16 __rt_sdiv32by16(
X__value_in_regs extern __declspec(__nothrow) __attribute__((const)) __sdiv32by16 __rt_sdiv32by16(
N int /*numer*/,
N short int /*denom*/);
N /*
N * Signed divide: (16-bit quot), (16-bit rem) = (32-bit) / (16-bit)
N */
N__value_in_regs extern _ARMABI_PURE __udiv32by16 __rt_udiv32by16(
X__value_in_regs extern __declspec(__nothrow) __attribute__((const)) __udiv32by16 __rt_udiv32by16(
N unsigned int /*numer*/,
N unsigned short /*denom*/);
N /*
N * Unsigned divide: (16-bit quot), (16-bit rem) = (32-bit) / (16-bit)
N */
N__value_in_regs extern _ARMABI_PURE __sdiv64by32 __rt_sdiv64by32(
X__value_in_regs extern __declspec(__nothrow) __attribute__((const)) __sdiv64by32 __rt_sdiv64by32(
N int /*numer_h*/, unsigned int /*numer_l*/,
N int /*denom*/);
N /*
N * Signed divide: (32-bit quot), (32-bit rem) = (64-bit) / (32-bit)
N */
N#endif
N
N/*
N * ARM floating-point mask/status function (for both hardfp and softfp)
N */
Nextern _ARMABI unsigned int __fp_status(unsigned int /*mask*/, unsigned int /*flags*/);
Xextern __declspec(__nothrow) unsigned int __fp_status(unsigned int , unsigned int );
N /*
N * mask and flags are bit-fields which correspond directly to the
N * floating point status register in the FPE/FPA and fplib.
N * __fp_status returns the current value of the status register,
N * and also sets the writable bits of the word
N * (the exception control and flag bytes) to:
N *
N * new = (old & ~mask) ^ flags;
N */
N#define __fpsr_IXE 0x100000
N#define __fpsr_UFE 0x80000
N#define __fpsr_OFE 0x40000
N#define __fpsr_DZE 0x20000
N#define __fpsr_IOE 0x10000
N
N#define __fpsr_IXC 0x10
N#define __fpsr_UFC 0x8
N#define __fpsr_OFC 0x4
N#define __fpsr_DZC 0x2
N#define __fpsr_IOC 0x1
N
N/*
N * Multibyte Character Functions.
N * The behaviour of the multibyte character functions is affected by the
N * LC_CTYPE category of the current locale. For a state-dependent encoding,
N * each function is placed into its initial state by a call for which its
N * character pointer argument, s, is a null pointer. Subsequent calls with s
N * as other than a null pointer cause the internal state of the function to be
N * altered as necessary. A call with s as a null pointer causes these functions
N * to return a nonzero value if encodings have state dependency, and a zero
N * otherwise. After the LC_CTYPE category is changed, the shift state of these
N * functions is indeterminate.
N */
Nextern _ARMABI int mblen(const char * /*s*/, size_t /*n*/);
Xextern __declspec(__nothrow) int mblen(const char * , size_t );
N /*
N * If s is not a null pointer, the mblen function determines the number of
N * bytes compromising the multibyte character pointed to by s. Except that
N * the shift state of the mbtowc function is not affected, it is equivalent
N * to mbtowc((wchar_t *)0, s, n);
N * Returns: If s is a null pointer, the mblen function returns a nonzero or
N * zero value, if multibyte character encodings, respectively, do
N * or do not have state-dependent encodings. If s is not a null
N * pointer, the mblen function either returns a 0 (if s points to a
N * null character), or returns the number of bytes that compromise
N * the multibyte character (if the next n of fewer bytes form a
N * valid multibyte character), or returns -1 (they do not form a
N * valid multibyte character).
N */
Nextern _ARMABI int mbtowc(wchar_t * __restrict /*pwc*/,
Xextern __declspec(__nothrow) int mbtowc(wchar_t * __restrict ,
N const char * __restrict /*s*/, size_t /*n*/);
N /*
N * If s is not a null pointer, the mbtowc function determines the number of
N * bytes that compromise the multibyte character pointed to by s. It then
N * determines the code for value of type wchar_t that corresponds to that
N * multibyte character. (The value of the code corresponding to the null
N * character is zero). If the multibyte character is valid and pwc is not a
N * null pointer, the mbtowc function stores the code in the object pointed
N * to by pwc. At most n bytes of the array pointed to by s will be examined.
N * Returns: If s is a null pointer, the mbtowc function returns a nonzero or
N * zero value, if multibyte character encodings, respectively, do
N * or do not have state-dependent encodings. If s is not a null
N * pointer, the mbtowc function either returns a 0 (if s points to
N * a null character), or returns the number of bytes that
N * compromise the converted multibyte character (if the next n of
N * fewer bytes form a valid multibyte character), or returns -1
N * (they do not form a valid multibyte character).
N */
Nextern _ARMABI int wctomb(char * /*s*/, wchar_t /*wchar*/);
Xextern __declspec(__nothrow) int wctomb(char * , wchar_t );
N /*
N * determines the number of bytes need to represent the multibyte character
N * corresponding to the code whose value is wchar (including any change in
N * shift state). It stores the multibyte character representation in the
N * array object pointed to by s (if s is not a null pointer). At most
N * MB_CUR_MAX characters are stored. If the value of wchar is zero, the
N * wctomb function is left in the initial shift state).
N * Returns: If s is a null pointer, the wctomb function returns a nonzero or
N * zero value, if multibyte character encodings, respectively, do
N * or do not have state-dependent encodings. If s is not a null
N * pointer, the wctomb function returns a -1 if the value of wchar
N * does not correspond to a valid multibyte character, or returns
N * the number of bytes that compromise the multibyte character
N * corresponding to the value of wchar.
N */
N
N/*
N * Multibyte String Functions.
N * The behaviour of the multibyte string functions is affected by the LC_CTYPE
N * category of the current locale.
N */
Nextern _ARMABI size_t mbstowcs(wchar_t * __restrict /*pwcs*/,
Xextern __declspec(__nothrow) size_t mbstowcs(wchar_t * __restrict ,
N const char * __restrict /*s*/, size_t /*n*/) __attribute__((__nonnull__(2)));
N /*
N * converts a sequence of multibyte character that begins in the initial
N * shift state from the array pointed to by s into a sequence of
N * corresponding codes and stores not more than n codes into the array
N * pointed to by pwcs. No multibyte character that follow a null character
N * (which is converted into a code with value zero) will be examined or
N * converted. Each multibyte character is converted as if by a call to
N * mbtowc function, except that the shift state of the mbtowc function is
N * not affected. No more than n elements will be modified in the array
N * pointed to by pwcs. If copying takes place between objects that overlap,
N * the behaviour is undefined.
N * Returns: If an invalid multibyte character is encountered, the mbstowcs
N * function returns (size_t)-1. Otherwise, the mbstowcs function
N * returns the number of array elements modified, not including
N * a terminating zero code, if any.
N */
Nextern _ARMABI size_t wcstombs(char * __restrict /*s*/,
Xextern __declspec(__nothrow) size_t wcstombs(char * __restrict ,
N const wchar_t * __restrict /*pwcs*/, size_t /*n*/) __attribute__((__nonnull__(2)));
N /*
N * converts a sequence of codes that correspond to multibyte characters
N * from the array pointed to by pwcs into a sequence of multibyte
N * characters that begins in the initial shift state and stores these
N * multibyte characters into the array pointed to by s, stopping if a
N * multibyte character would exceed the limit of n total bytes or if a
N * null character is stored. Each code is converted as if by a call to the
N * wctomb function, except that the shift state of the wctomb function is
N * not affected. No more than n elements will be modified in the array
N * pointed to by s. If copying takes place between objects that overlap,
N * the behaviour is undefined.
N * Returns: If a code is encountered that does not correspond to a valid
N * multibyte character, the wcstombs function returns (size_t)-1.
N * Otherwise, the wcstombs function returns the number of bytes
N * modified, not including a terminating null character, if any.
N */
N
Nextern _ARMABI void __use_realtime_heap(void);
Xextern __declspec(__nothrow) void __use_realtime_heap(void);
Nextern _ARMABI void __use_realtime_division(void);
Xextern __declspec(__nothrow) void __use_realtime_division(void);
Nextern _ARMABI void __use_two_region_memory(void);
Xextern __declspec(__nothrow) void __use_two_region_memory(void);
Nextern _ARMABI void __use_no_heap(void);
Xextern __declspec(__nothrow) void __use_no_heap(void);
Nextern _ARMABI void __use_no_heap_region(void);
Xextern __declspec(__nothrow) void __use_no_heap_region(void);
N
Nextern _ARMABI char const *__C_library_version_string(void);
Xextern __declspec(__nothrow) char const *__C_library_version_string(void);
Nextern _ARMABI int __C_library_version_number(void);
Xextern __declspec(__nothrow) int __C_library_version_number(void);
N
N #ifdef __cplusplus
S } /* extern "C" */
S } /* namespace std */
N #endif /* __cplusplus */
N #endif /* __STDLIB_DECLS */
N
N #if _AEABI_PORTABILITY_LEVEL != 0 && !defined _AEABI_PORTABLE
X #if _AEABI_PORTABILITY_LEVEL != 0 && !0L
S #define _AEABI_PORTABLE
N #endif
N
N #ifdef __cplusplus
S #ifndef __STDLIB_NO_EXPORTS
S #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB
S using ::std::atoll;
S using ::std::lldiv_t;
S #endif /* !defined(__STRICT_ANSI__) || __USE_C99_STDLIB */
S using ::std::div_t;
S using ::std::ldiv_t;
S using ::std::atof;
S using ::std::atoi;
S using ::std::atol;
S using ::std::strtod;
S#if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB
S using ::std::strtof;
S using ::std::strtold;
S#endif
S using ::std::strtol;
S using ::std::strtoul;
S using ::std::strtoll;
S using ::std::strtoull;
S using ::std::rand;
S using ::std::srand;
S using ::std::_rand_state;
S using ::std::_rand_r;
S using ::std::_srand_r;
S using ::std::_ANSI_rand_state;
S using ::std::_ANSI_rand_r;
S using ::std::_ANSI_srand_r;
S using ::std::calloc;
S using ::std::free;
S using ::std::malloc;
S using ::std::realloc;
S#if !defined(__STRICT_ANSI__)
S using ::std::posix_memalign;
S#endif
S using ::std::__heapprt;
S using ::std::__heapstats;
S using ::std::__heapvalid;
S using ::std::abort;
S using ::std::atexit;
S using ::std::exit;
S using ::std::_Exit;
S using ::std::getenv;
S using ::std::system;
S using ::std::bsearch;
S using ::std::qsort;
S using ::std::abs;
S using ::std::div;
S using ::std::labs;
S using ::std::ldiv;
S #if !defined(__STRICT_ANSI__) || __USE_C99_STDLIB
S using ::std::llabs;
S using ::std::lldiv;
S #endif /* !defined(__STRICT_ANSI__) || __USE_C99_STDLIB */
S#if !(__ARM_NO_DEPRECATED_FUNCTIONS)
S using ::std::__sdiv32by16;
S using ::std::__udiv32by16;
S using ::std::__sdiv64by32;
S using ::std::__rt_sdiv32by16;
S using ::std::__rt_udiv32by16;
S using ::std::__rt_sdiv64by32;
S#endif
S using ::std::__fp_status;
S using ::std::mblen;
S using ::std::mbtowc;
S using ::std::wctomb;
S using ::std::mbstowcs;
S using ::std::wcstombs;
S using ::std::__use_realtime_heap;
S using ::std::__use_realtime_division;
S using ::std::__use_two_region_memory;
S using ::std::__use_no_heap;
S using ::std::__use_no_heap_region;
S using ::std::__C_library_version_string;
S using ::std::__C_library_version_number;
S using ::std::size_t;
S using ::std::__aeabi_MB_CUR_MAX;
S #endif /* __STDLIB_NO_EXPORTS */
N #endif /* __cplusplus */
N
N#undef __LONGLONG
N
N#endif /* __stdlib_h */
N
N/* end of stdlib.h */
L 4 "..\src\app\main.c" 2
N#include "test_cfg_global.h"
L 1 "..\src\app\test_cfg_global.h" 1
N/*******************************************************************************
N* Copyright (C) 2019-2022, 518 Systems (R),All Rights Reserved.
N*
N* File: test_cfg_global.h
N* Description<6F><6E> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȫ<EFBFBD><C8AB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͷ<EFBFBD>ļ<EFBFBD>
N* Version<6F><6E> V0.1
N* Date<74><65> 2021-05-01
N* Author<6F><72> kevin
N *******************************************************************************/
N
N#ifndef __TEST_GLOBAL_CONFIG_H__
N#define __TEST_GLOBAL_CONFIG_H__
N/*******************************************************************************
N* 1.Included files
N*******************************************************************************/
N
N/*******************************************************************************
N* 2.Global constant and macro definitions using #define
N*******************************************************************************/
N
N#define _TEST_TIMER_EN 0
N#define _TEST_DSI_TX_EN 0
N#define _TEST_DSI_RX_EN 0
N#define _TEST_PWM_EN 0
N#define _TEST_SWIRE_EN 0
N#define _TEST_WDG_EN 0
N#define _TEST_GPIO_EN 0
N#define _TEST_I2C_EN 0
N#define _TEST_SPI_EN 0
N
N#define _DEMO_S8_EN 1
N#define _DEMO_S8P_EN 0
N#if _TEST_TIMER_EN
X#if 0
S #include "test_hal_timer.h"
N#endif
N
N#if _TEST_I2C_EN
X#if 0
S #include "test_hal_i2c.h"
N#endif
N
N#if _TEST_SPI_EN
X#if 0
S #include "test_hal_spi.h"
N#endif
N
N#if _TEST_DSI_TX_EN
X#if 0
S #include "test_hal_dsi_tx.h"
N#endif
N
N#if _TEST_DSI_RX_EN
X#if 0
S #include "test_hal_dsi_rx.h"
N#endif
N
N#if _TEST_PWM_EN
X#if 0
S #include "test_hal_pwm.h"
N#endif
N
N#if _TEST_SWIRE_EN
X#if 0
S #include "test_hal_swire.h"
N#endif
N
N#if _TEST_WDG_EN
X#if 0
S #include "test_hal_wdg.h"
N#endif
N
N#if _TEST_GPIO_EN
X#if 0
S #include "test_hal_gpio.h"
N#endif
N
N#if _TEST_I2C_TP_EN
S #include "test_hal_i2c_tp.h"
N#endif
N
N#if _DEMO_S8_EN
X#if 1
N #include "ap_demo.h"
L 1 "..\src\app\demo\ap_demo.h" 1
N/*******************************************************************************
N*
N*
N* File: s8_demo.h
N* Description: s8<73><38><EFBFBD><EFBFBD>ͷ<EFBFBD>ļ<EFBFBD>
N* Version: V0.1
N* Date: 2021-02-22
N* Author: Tempest
N *******************************************************************************/
N
N#ifndef __AP_DEMO_H__
N#define __AP_DEMO_H__
N
N//#define DISABLE_TDDI_I2C_FUNCTION
N//#define USE_WL518_INTERNAL_FLASH
N
N
N/* <20><>ͬ<EFBFBD><CDAC><EFBFBD><EFBFBD>ѡ<EFBFBD><D1A1><EFBFBD><EFBFBD>ѡ<EFBFBD><D1A1>ѡ1<D1A1><31>*/
N#define USE_FOR_SUMSUNG_S21
N//#define USE_FOR_SUMSUNG_S20PLUS
N//#define USE_FOR_OPPO_RENO3_PRO
N
N
N#ifdef USE_FOR_SUMSUNG_S20PLUS
S#define AMOLED_NT37701_VNOX667 1
S
S#define USE_FOR_S10_BLUE_MODE //S10<31><30><EFBFBD><EFBFBD>ģʽ
S#define ADD_PANEL_DISPLAY_MODE //<2F><>Ļģʽ<C4A3><CABD><EFBFBD>ܡ<EFBFBD><DCA1><EFBFBD>ƽ<EFBFBD><EFBFBD><E2B9A6>
N#endif
N
N#ifdef USE_FOR_SUMSUNG_S21
N#define LCD_FT8719_DU48 0
N#define AMOLED_NT37701_HX628 1
N
N#define PANEL_INIT_CODE_ARRAY 1
N
N#define G_PHONE_INT_DEFAULT_LOW
N
N#define USE_FOR_S10_BLUE_MODE //S10<31><30><EFBFBD><EFBFBD>ģʽ
N#define ADD_PANEL_DISPLAY_MODE //<2F><>Ļģʽ<C4A3><CABD><EFBFBD>ܡ<EFBFBD><DCA1><EFBFBD>ƽ<EFBFBD><EFBFBD><E2B9A6>
N#define ADD_TIMER3_FUNCTION
N#define ENABLE_TP_SLEEP
N
N#define USE_FILTER_20220513
N#endif
N
N#ifdef USE_FOR_OPPO_RENO3_PRO
S#define AMOLED_NT37701_HX655 1
N#endif
N
N/**
N* @brief test system <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N* @param none
N* @retval none
N*/
Nvoid ap_demo(void);
Nvoid app_tp_I2C_init(void);
N#endif
L 75 "..\src\app\test_cfg_global.h" 2
N #include "app_tp_for_custom_s8.h"
L 1 "..\src\app\demo\app_tp_for_custom_s8.h" 1
N/*******************************************************************************
N*
N*
N* File: app_tp_for_custom.h
N* Description tp Э<><EFBFBD><E9B4A6><EFBFBD>ļ<EFBFBD><C4BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ض<EFBFBD><D8B6><EFBFBD><EFBFBD>õĺ<C3B5>
N* Version V0.1
N* Date 2021-10-14
N* Author zhanghz
N*******************************************************************************/
N#ifndef __APP_TP_FOR_CUSTOM_S8_H__
N#define __APP_TP_FOR_CUSTOM_S8_H__
N#include "test_cfg_global.h"
L 1 "..\src\app\test_cfg_global.h" 1
N/*******************************************************************************
N* Copyright (C) 2019-2022, 518 Systems (R),All Rights Reserved.
N*
N* File: test_cfg_global.h
N* Description<6F><6E> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ȫ<EFBFBD><C8AB><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ͷ<EFBFBD>ļ<EFBFBD>
N* Version<6F><6E> V0.1
N* Date<74><65> 2021-05-01
N* Author<6F><72> kevin
N *******************************************************************************/
N
N#ifndef __TEST_GLOBAL_CONFIG_H__
S#define __TEST_GLOBAL_CONFIG_H__
S/*******************************************************************************
S* 1.Included files
S*******************************************************************************/
S
S/*******************************************************************************
S* 2.Global constant and macro definitions using #define
S*******************************************************************************/
S
S#define _TEST_TIMER_EN 0
S#define _TEST_DSI_TX_EN 0
S#define _TEST_DSI_RX_EN 0
S#define _TEST_PWM_EN 0
S#define _TEST_SWIRE_EN 0
S#define _TEST_WDG_EN 0
S#define _TEST_GPIO_EN 0
S#define _TEST_I2C_EN 0
S#define _TEST_SPI_EN 0
S
S#define _DEMO_S8_EN 1
S#define _DEMO_S8P_EN 0
S#if _TEST_TIMER_EN
S #include "test_hal_timer.h"
S#endif
S
S#if _TEST_I2C_EN
S #include "test_hal_i2c.h"
S#endif
S
S#if _TEST_SPI_EN
S #include "test_hal_spi.h"
S#endif
S
S#if _TEST_DSI_TX_EN
S #include "test_hal_dsi_tx.h"
S#endif
S
S#if _TEST_DSI_RX_EN
S #include "test_hal_dsi_rx.h"
S#endif
S
S#if _TEST_PWM_EN
S #include "test_hal_pwm.h"
S#endif
S
S#if _TEST_SWIRE_EN
S #include "test_hal_swire.h"
S#endif
S
S#if _TEST_WDG_EN
S #include "test_hal_wdg.h"
S#endif
S
S#if _TEST_GPIO_EN
S #include "test_hal_gpio.h"
S#endif
S
S#if _TEST_I2C_TP_EN
S #include "test_hal_i2c_tp.h"
S#endif
S
S#if _DEMO_S8_EN
S #include "ap_demo.h"
S #include "app_tp_for_custom_s8.h"
S#endif
S
S#if _DEMO_S8P_EN
S #include "s8p_demo.h"
S #include "app_tp_for_custom_s8p.h"
S#endif
S
N#endif
N
L 13 "..\src\app\demo\app_tp_for_custom_s8.h" 2
N
N#include "string.h"
N#include "tau_device_datatype.h"
L 1 "..\src\common\tau_device_datatype.h" 1
N/*******************************************************************************
N *
N *
N * File: tau_device_datatype.h
N * Description device datatype
N * Version V0.1
N * Date 2020-12-04
N * Author kevin
N *******************************************************************************/
N
N#ifndef _TAU_DEVICE_DATATYPE_H_
N#define _TAU_DEVICE_DATATYPE_H_
N
N
N/*******************************************************************************
N* 1.Included files
N*******************************************************************************/
N
N#include "stdint.h"
L 1 "C:\Keil_v5\ARM\ARMCC\Bin\..\include\stdint.h" 1
N/* Copyright (C) ARM Ltd., 1999,2014 */
N/* All rights reserved */
N
N/*
N * RCS $Revision$
N * Checkin $Date$
N * Revising $Author: agrant $
N */
N
N#ifndef __stdint_h
N#define __stdint_h
N#define __ARMCLIB_VERSION 5060037
N
N #ifdef __INT64_TYPE__
S /* armclang predefines '__INT64_TYPE__' and '__INT64_C_SUFFIX__' */
S #define __INT64 __INT64_TYPE__
N #else
N /* armcc has builtin '__int64' which can be used in --strict mode */
N #define __INT64 __int64
N #define __INT64_C_SUFFIX__ ll
N #endif
N #define __PASTE2(x, y) x ## y
N #define __PASTE(x, y) __PASTE2(x, y)
N #define __INT64_C(x) __ESCAPE__(__PASTE(x, __INT64_C_SUFFIX__))
N #define __UINT64_C(x) __ESCAPE__(__PASTE(x ## u, __INT64_C_SUFFIX__))
N #if defined(__clang__) || (defined(__ARMCC_VERSION) && !defined(__STRICT_ANSI__))
X #if 0L || (1L && !0L)
N /* armclang and non-strict armcc allow 'long long' in system headers */
N #define __LONGLONG long long
N #else
S /* strict armcc has '__int64' */
S #define __LONGLONG __int64
N #endif
N
N #ifndef __STDINT_DECLS
N #define __STDINT_DECLS
N
N #undef __CLIBNS
N
N #ifdef __cplusplus
S namespace std {
S #define __CLIBNS std::
S extern "C" {
N #else
N #define __CLIBNS
N #endif /* __cplusplus */
N
N
N/*
N * 'signed' is redundant below, except for 'signed char' and if
N * the typedef is used to declare a bitfield.
N */
N
N /* 7.18.1.1 */
N
N /* exact-width signed integer types */
Ntypedef signed char int8_t;
Ntypedef signed short int int16_t;
Ntypedef signed int int32_t;
Ntypedef signed __INT64 int64_t;
Xtypedef signed __int64 int64_t;
N
N /* exact-width unsigned integer types */
Ntypedef unsigned char uint8_t;
Ntypedef unsigned short int uint16_t;
Ntypedef unsigned int uint32_t;
Ntypedef unsigned __INT64 uint64_t;
Xtypedef unsigned __int64 uint64_t;
N
N /* 7.18.1.2 */
N
N /* smallest type of at least n bits */
N /* minimum-width signed integer types */
Ntypedef signed char int_least8_t;
Ntypedef signed short int int_least16_t;
Ntypedef signed int int_least32_t;
Ntypedef signed __INT64 int_least64_t;
Xtypedef signed __int64 int_least64_t;
N
N /* minimum-width unsigned integer types */
Ntypedef unsigned char uint_least8_t;
Ntypedef unsigned short int uint_least16_t;
Ntypedef unsigned int uint_least32_t;
Ntypedef unsigned __INT64 uint_least64_t;
Xtypedef unsigned __int64 uint_least64_t;
N
N /* 7.18.1.3 */
N
N /* fastest minimum-width signed integer types */
Ntypedef signed int int_fast8_t;
Ntypedef signed int int_fast16_t;
Ntypedef signed int int_fast32_t;
Ntypedef signed __INT64 int_fast64_t;
Xtypedef signed __int64 int_fast64_t;
N
N /* fastest minimum-width unsigned integer types */
Ntypedef unsigned int uint_fast8_t;
Ntypedef unsigned int uint_fast16_t;
Ntypedef unsigned int uint_fast32_t;
Ntypedef unsigned __INT64 uint_fast64_t;
Xtypedef unsigned __int64 uint_fast64_t;
N
N /* 7.18.1.4 integer types capable of holding object pointers */
N#if __sizeof_ptr == 8
X#if 4 == 8
Stypedef signed __INT64 intptr_t;
Stypedef unsigned __INT64 uintptr_t;
N#else
Ntypedef signed int intptr_t;
Ntypedef unsigned int uintptr_t;
N#endif
N
N /* 7.18.1.5 greatest-width integer types */
Ntypedef signed __LONGLONG intmax_t;
Xtypedef signed long long intmax_t;
Ntypedef unsigned __LONGLONG uintmax_t;
Xtypedef unsigned long long uintmax_t;
N
N
N#if !defined(__cplusplus) || defined(__STDC_LIMIT_MACROS)
X#if !0L || 0L
N
N /* 7.18.2.1 */
N
N /* minimum values of exact-width signed integer types */
N#define INT8_MIN -128
N#define INT16_MIN -32768
N#define INT32_MIN (~0x7fffffff) /* -2147483648 is unsigned */
N#define INT64_MIN __INT64_C(~0x7fffffffffffffff) /* -9223372036854775808 is unsigned */
N
N /* maximum values of exact-width signed integer types */
N#define INT8_MAX 127
N#define INT16_MAX 32767
N#define INT32_MAX 2147483647
N#define INT64_MAX __INT64_C(9223372036854775807)
N
N /* maximum values of exact-width unsigned integer types */
N#define UINT8_MAX 255
N#define UINT16_MAX 65535
N#define UINT32_MAX 4294967295u
N#define UINT64_MAX __UINT64_C(18446744073709551615)
N
N /* 7.18.2.2 */
N
N /* minimum values of minimum-width signed integer types */
N#define INT_LEAST8_MIN -128
N#define INT_LEAST16_MIN -32768
N#define INT_LEAST32_MIN (~0x7fffffff)
N#define INT_LEAST64_MIN __INT64_C(~0x7fffffffffffffff)
N
N /* maximum values of minimum-width signed integer types */
N#define INT_LEAST8_MAX 127
N#define INT_LEAST16_MAX 32767
N#define INT_LEAST32_MAX 2147483647
N#define INT_LEAST64_MAX __INT64_C(9223372036854775807)
N
N /* maximum values of minimum-width unsigned integer types */
N#define UINT_LEAST8_MAX 255
N#define UINT_LEAST16_MAX 65535
N#define UINT_LEAST32_MAX 4294967295u
N#define UINT_LEAST64_MAX __UINT64_C(18446744073709551615)
N
N /* 7.18.2.3 */
N
N /* minimum values of fastest minimum-width signed integer types */
N#define INT_FAST8_MIN (~0x7fffffff)
N#define INT_FAST16_MIN (~0x7fffffff)
N#define INT_FAST32_MIN (~0x7fffffff)
N#define INT_FAST64_MIN __INT64_C(~0x7fffffffffffffff)
N
N /* maximum values of fastest minimum-width signed integer types */
N#define INT_FAST8_MAX 2147483647
N#define INT_FAST16_MAX 2147483647
N#define INT_FAST32_MAX 2147483647
N#define INT_FAST64_MAX __INT64_C(9223372036854775807)
N
N /* maximum values of fastest minimum-width unsigned integer types */
N#define UINT_FAST8_MAX 4294967295u
N#define UINT_FAST16_MAX 4294967295u
N#define UINT_FAST32_MAX 4294967295u
N#define UINT_FAST64_MAX __UINT64_C(18446744073709551615)
N
N /* 7.18.2.4 */
N
N /* minimum value of pointer-holding signed integer type */
N#if __sizeof_ptr == 8
X#if 4 == 8
S#define INTPTR_MIN INT64_MIN
N#else
N#define INTPTR_MIN INT32_MIN
N#endif
N
N /* maximum value of pointer-holding signed integer type */
N#if __sizeof_ptr == 8
X#if 4 == 8
S#define INTPTR_MAX INT64_MAX
N#else
N#define INTPTR_MAX INT32_MAX
N#endif
N
N /* maximum value of pointer-holding unsigned integer type */
N#if __sizeof_ptr == 8
X#if 4 == 8
S#define UINTPTR_MAX UINT64_MAX
N#else
N#define UINTPTR_MAX UINT32_MAX
N#endif
N
N /* 7.18.2.5 */
N
N /* minimum value of greatest-width signed integer type */
N#define INTMAX_MIN __ESCAPE__(~0x7fffffffffffffffll)
N
N /* maximum value of greatest-width signed integer type */
N#define INTMAX_MAX __ESCAPE__(9223372036854775807ll)
N
N /* maximum value of greatest-width unsigned integer type */
N#define UINTMAX_MAX __ESCAPE__(18446744073709551615ull)
N
N /* 7.18.3 */
N
N /* limits of ptrdiff_t */
N#if __sizeof_ptr == 8
X#if 4 == 8
S#define PTRDIFF_MIN INT64_MIN
S#define PTRDIFF_MAX INT64_MAX
N#else
N#define PTRDIFF_MIN INT32_MIN
N#define PTRDIFF_MAX INT32_MAX
N#endif
N
N /* limits of sig_atomic_t */
N#define SIG_ATOMIC_MIN (~0x7fffffff)
N#define SIG_ATOMIC_MAX 2147483647
N
N /* limit of size_t */
N#if __sizeof_ptr == 8
X#if 4 == 8
S#define SIZE_MAX UINT64_MAX
N#else
N#define SIZE_MAX UINT32_MAX
N#endif
N
N /* limits of wchar_t */
N /* NB we have to undef and redef because they're defined in both
N * stdint.h and wchar.h */
N#undef WCHAR_MIN
N#undef WCHAR_MAX
N
N#if defined(__WCHAR32) || (defined(__ARM_SIZEOF_WCHAR_T) && __ARM_SIZEOF_WCHAR_T == 4)
X#if 0L || (0L && __ARM_SIZEOF_WCHAR_T == 4)
S #define WCHAR_MIN 0
S #define WCHAR_MAX 0xffffffffU
N#else
N #define WCHAR_MIN 0
N #define WCHAR_MAX 65535
N#endif
N
N /* limits of wint_t */
N#define WINT_MIN (~0x7fffffff)
N#define WINT_MAX 2147483647
N
N#endif /* __STDC_LIMIT_MACROS */
N
N#if !defined(__cplusplus) || defined(__STDC_CONSTANT_MACROS)
X#if !0L || 0L
N
N /* 7.18.4.1 macros for minimum-width integer constants */
N#define INT8_C(x) (x)
N#define INT16_C(x) (x)
N#define INT32_C(x) (x)
N#define INT64_C(x) __INT64_C(x)
N
N#define UINT8_C(x) (x ## u)
N#define UINT16_C(x) (x ## u)
N#define UINT32_C(x) (x ## u)
N#define UINT64_C(x) __UINT64_C(x)
N
N /* 7.18.4.2 macros for greatest-width integer constants */
N#define INTMAX_C(x) __ESCAPE__(x ## ll)
N#define UINTMAX_C(x) __ESCAPE__(x ## ull)
N
N#endif /* __STDC_CONSTANT_MACROS */
N
N #ifdef __cplusplus
S } /* extern "C" */
S } /* namespace std */
N #endif /* __cplusplus */
N #endif /* __STDINT_DECLS */
N
N #ifdef __cplusplus
S #ifndef __STDINT_NO_EXPORTS
S using ::std::int8_t;
S using ::std::int16_t;
S using ::std::int32_t;
S using ::std::int64_t;
S using ::std::uint8_t;
S using ::std::uint16_t;
S using ::std::uint32_t;
S using ::std::uint64_t;
S using ::std::int_least8_t;
S using ::std::int_least16_t;
S using ::std::int_least32_t;
S using ::std::int_least64_t;
S using ::std::uint_least8_t;
S using ::std::uint_least16_t;
S using ::std::uint_least32_t;
S using ::std::uint_least64_t;
S using ::std::int_fast8_t;
S using ::std::int_fast16_t;
S using ::std::int_fast32_t;
S using ::std::int_fast64_t;
S using ::std::uint_fast8_t;
S using ::std::uint_fast16_t;
S using ::std::uint_fast32_t;
S using ::std::uint_fast64_t;
S using ::std::intptr_t;
S using ::std::uintptr_t;
S using ::std::intmax_t;
S using ::std::uintmax_t;
S #endif
N #endif /* __cplusplus */
N
N#undef __INT64
N#undef __LONGLONG
N
N#endif /* __stdint_h */
N
N/* end of stdint.h */
L 20 "..\src\common\tau_device_datatype.h" 2
N#include "tau_common.h"
L 1 "..\src\common\tau_common.h" 1
N/*******************************************************************************
N*
N*
N* File: tau_common.h
N* Description ͨ<><CDA8><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ض<EFBFBD><D8B6><EFBFBD>ͷ<EFBFBD>ļ<EFBFBD>
N* Version V0.1
N* Date 2020-09-07
N* Author lzy
N *******************************************************************************/
N
N#ifndef __TAU_COMMON_H
N#define __TAU_COMMON_H
N
N/*******************************************************************************
N* 1.Included files
N*******************************************************************************/
N#include "stdint.h"
N#include "math.h"
L 1 "C:\Keil_v5\ARM\ARMCC\Bin\..\include\math.h" 1
N/*
N * math.h: ANSI 'C' (X3J11 Oct 88) library header, section 4.5
N * Copyright (C) Codemist Ltd., 1988
N * Copyright 1991-1998,2004-2006,2014 ARM Limited. All rights reserved
N */
N
N/*
N * RCS $Revision$ Codemist 0.03
N * Checkin $Date$
N * Revising $Author: statham $
N */
N
N/*
N * Parts of this file are based upon fdlibm:
N *
N * ====================================================
N * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
N *
N * Developed at SunSoft, a Sun Microsystems, Inc. business.
N * Permission to use, copy, modify, and distribute this
N * software is freely granted, provided that this notice
N * is preserved.
N * ====================================================
N */
N
N#ifndef __math_h
N#define __math_h
N#define __ARMCLIB_VERSION 5060037
N
N#if defined(__clang__) || (defined(__ARMCC_VERSION) && !defined(__STRICT_ANSI__))
X#if 0L || (1L && !0L)
N /* armclang and non-strict armcc allow 'long long' in system headers */
N #define __LONGLONG long long
N#else
S /* strict armcc has '__int64' */
S #define __LONGLONG __int64
N#endif
N
N/*
N * Some of these declarations are new in C99. To access them in C++
N * you can use -D__USE_C99_MATH (or -D__USE_C99_ALL).
N */
N#ifndef __USE_C99_MATH
N #if defined(__USE_C99_ALL) || (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__) || (defined(__cplusplus) && 201103L <= __cplusplus)
X #if 0L || (1L && 199901L <= 199901L) || (0L && 201103L <= __cplusplus)
N #define __USE_C99_MATH 1
N #endif
N#endif
N
N#define _ARMABI __declspec(__nothrow)
N#ifdef __TARGET_ARCH_AARCH64
S# define _ARMABI_SOFTFP __declspec(__nothrow)
N#else
N# define _ARMABI_SOFTFP __declspec(__nothrow) __attribute__((__pcs__("aapcs")))
N# define __HAVE_LONGDOUBLE 1
N#endif
N#define _ARMABI_PURE __declspec(__nothrow) __attribute__((const))
N#ifdef __FP_FENV_EXCEPTIONS
S# define _ARMABI_FPEXCEPT _ARMABI
N#else
N# define _ARMABI_FPEXCEPT _ARMABI __attribute__((const))
N#endif
N
N#ifdef __cplusplus
S#define _ARMABI_INLINE inline
S#define _ARMABI_INLINE_DEF inline
N#elif defined __GNUC__ || defined _USE_STATIC_INLINE
X#elif 1L || 0L
N#define _ARMABI_INLINE static __inline
N#define _ARMABI_INLINE_DEF static __inline
N#elif (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__)
X#elif (1L && 199901L <= 199901L)
S#define _ARMABI_INLINE inline
S#define _ARMABI_INLINE_DEF static inline
S#else
S#define _ARMABI_INLINE __inline
S#define _ARMABI_INLINE_DEF __inline
N#endif
N
N#ifdef __TARGET_ARCH_AARCH64
S# define _SOFTFP
N#else
N# define _SOFTFP __attribute__((__pcs__("aapcs")))
N#endif
N
N /*
N * If the compiler supports signalling nans as per N965 then it
N * will define __SUPPORT_SNAN__, in which case a user may define
N * _WANT_SNAN in order to obtain the nans function, as well as the
N * FP_NANS and FP_NANQ classification macros.
N */
N#if defined(__SUPPORT_SNAN__) && defined(_WANT_SNAN)
X#if 0L && 0L
S#pragma import(__use_snan)
N#endif
N
N/*
N * Macros for our inline functions down below.
N * unsigned& __FLT(float x) - returns the bit pattern of x
N * unsigned& __HI(double x) - returns the bit pattern of the high part of x
N * (high part has exponent & sign bit in it)
N * unsigned& __LO(double x) - returns the bit pattern of the low part of x
N *
N * We can assign to __FLT, __HI, and __LO and the appropriate bits get set in
N * the floating point variable used.
N *
N * __HI & __LO are affected by the endianness and the target FPU.
N */
N#define __FLT(x) (*(unsigned *)&(x))
N#if defined(__ARM_BIG_ENDIAN) || defined(__BIG_ENDIAN)
X#if 0L || 0L
S# define __LO(x) (*(1 + (unsigned *)&(x)))
S# define __HI(x) (*(unsigned *)&(x))
N#else /* !defined(__ARM_BIG_ENDIAN) && !defined(__BIG_ENDIAN) */
N# define __HI(x) (*(1 + (unsigned *)&(x)))
N# define __LO(x) (*(unsigned *)&(x))
N#endif /* !defined(__ARM_BIG_ENDIAN) && !defined(__BIG_ENDIAN) */
N
N# ifndef __MATH_DECLS
N# define __MATH_DECLS
N
N
N/*
N * A set of functions that we don't actually want to put in the standard
N * namespace ever. These are all called by the C99 macros. As they're
N * not specified by any standard they can't belong in ::std::. The
N * macro #defines are below amongst the standard function declarations.
N * We only include these if we actually need them later on
N */
N#if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
X#if !0L || 1L
N# ifdef __cplusplus
S extern "C" {
N# endif /* __cplusplus */
N
Nextern _SOFTFP unsigned __ARM_dcmp4(double /*x*/, double /*y*/);
Xextern __attribute__((__pcs__("aapcs"))) unsigned __ARM_dcmp4(double , double );
Nextern _SOFTFP unsigned __ARM_fcmp4(float /*x*/, float /*y*/);
Xextern __attribute__((__pcs__("aapcs"))) unsigned __ARM_fcmp4(float , float );
N /*
N * Compare x and y and return the CPSR in r0. These means we can test for
N * result types with bit pattern matching.
N *
N * These are a copy of the declarations in rt_fp.h keep in sync.
N */
N
Nextern _ARMABI_SOFTFP int __ARM_fpclassifyf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_fpclassifyf(float );
Nextern _ARMABI_SOFTFP int __ARM_fpclassify(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_fpclassify(double );
N /* Classify x into NaN, infinite, normal, subnormal, zero */
N /* Used by fpclassify macro */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isfinitef(float __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isfinitef(float __x)
N{
N return ((__FLT(__x) >> 23) & 0xff) != 0xff;
X return (((*(unsigned *)&(__x)) >> 23) & 0xff) != 0xff;
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isfinite(double __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isfinite(double __x)
N{
N return ((__HI(__x) >> 20) & 0x7ff) != 0x7ff;
X return (((*(1 + (unsigned *)&(__x))) >> 20) & 0x7ff) != 0x7ff;
N}
N /* Return 1 if __x is finite, 0 otherwise */
N /* Used by isfinite macro */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isinff(float __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isinff(float __x)
N{
N return (__FLT(__x) << 1) == 0xff000000;
X return ((*(unsigned *)&(__x)) << 1) == 0xff000000;
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isinf(double __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isinf(double __x)
N{
N return ((__HI(__x) << 1) == 0xffe00000) && (__LO(__x) == 0);
X return (((*(1 + (unsigned *)&(__x))) << 1) == 0xffe00000) && ((*(unsigned *)&(__x)) == 0);
N}
N /* Return 1 if __x is infinite, 0 otherwise */
N /* Used by isinf macro */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_islessgreaterf(float __x, float __y)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_islessgreaterf(float __x, float __y)
N{
N unsigned __f = __ARM_fcmp4(__x, __y) >> 28;
N return (__f == 8) || (__f == 2); /* Just N set or Just Z set */
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_islessgreater(double __x, double __y)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_islessgreater(double __x, double __y)
N{
N unsigned __f = __ARM_dcmp4(__x, __y) >> 28;
N return (__f == 8) || (__f == 2); /* Just N set or Just Z set */
N}
N /*
N * Compare __x and __y and return 1 if __x < __y or __x > __y, 0 otherwise
N * Used by islessgreater macro
N */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isnanf(float __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isnanf(float __x)
N{
N return (0x7f800000 - (__FLT(__x) & 0x7fffffff)) >> 31;
X return (0x7f800000 - ((*(unsigned *)&(__x)) & 0x7fffffff)) >> 31;
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isnan(double __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isnan(double __x)
N{
N unsigned __xf = __HI(__x) | ((__LO(__x) == 0) ? 0 : 1);
X unsigned __xf = (*(1 + (unsigned *)&(__x))) | (((*(unsigned *)&(__x)) == 0) ? 0 : 1);
N return (0x7ff00000 - (__xf & 0x7fffffff)) >> 31;
N}
N /* Return 1 if __x is a NaN, 0 otherwise */
N /* Used by isnan macro */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isnormalf(float __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isnormalf(float __x)
N{
N unsigned __xe = (__FLT(__x) >> 23) & 0xff;
X unsigned __xe = ((*(unsigned *)&(__x)) >> 23) & 0xff;
N return (__xe != 0xff) && (__xe != 0);
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_isnormal(double __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_isnormal(double __x)
N{
N unsigned __xe = (__HI(__x) >> 20) & 0x7ff;
X unsigned __xe = ((*(1 + (unsigned *)&(__x))) >> 20) & 0x7ff;
N return (__xe != 0x7ff) && (__xe != 0);
N}
N /* Return 1 if __x is a normalised number, 0 otherwise */
N /* used by isnormal macro */
N
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_signbitf(float __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_signbitf(float __x)
N{
N return __FLT(__x) >> 31;
X return (*(unsigned *)&(__x)) >> 31;
N}
N_ARMABI_INLINE_DEF _ARMABI_SOFTFP int __ARM_signbit(double __x)
Xstatic __inline __declspec(__nothrow) __attribute__((__pcs__("aapcs"))) int __ARM_signbit(double __x)
N{
N return __HI(__x) >> 31;
X return (*(1 + (unsigned *)&(__x))) >> 31;
N}
N /* Return signbit of __x */
N /* Used by signbit macro */
N
N# ifdef __cplusplus
S } /* extern "C" */
N# endif /* __cplusplus */
N#endif /* Strict ANSI */
N
N# undef __CLIBNS
N
N# ifdef __cplusplus
S namespace std {
S# define __CLIBNS ::std::
S extern "C" {
N# else
N# define __CLIBNS
N# endif /* __cplusplus */
N
N
N#ifndef __has_builtin
N #define __has_builtin(x) 0
N#endif
N
N#if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
X#if !0L || 1L
N /* C99 additions */
N typedef float float_t;
N typedef double double_t;
N#if __has_builtin(__builtin_inf)
X#if 0
S# define HUGE_VALF __builtin_inff()
S# define HUGE_VALL __builtin_infl()
S# define INFINITY __builtin_inff()
S# define NAN __builtin_nanf("")
N# else
N# define HUGE_VALF ((float)__INFINITY__)
N# define HUGE_VALL ((long double)__INFINITY__)
N# define INFINITY ((float)__INFINITY__)
N# define NAN (__ESCAPE__(0f_7FC00000))
N#endif
N
N# define MATH_ERRNO 1
N# define MATH_ERREXCEPT 2
Nextern const int math_errhandling;
N#endif
N#if __has_builtin(__builtin_inf)
X#if 0
S# define HUGE_VAL __builtin_inf()
N#else
N# define HUGE_VAL ((double)__INFINITY__)
N#endif
N
Nextern _ARMABI double acos(double /*x*/);
Xextern __declspec(__nothrow) double acos(double );
N /* computes the principal value of the arc cosine of x */
N /* a domain error occurs for arguments not in the range -1 to 1 */
N /* Returns: the arc cosine in the range 0 to Pi. */
Nextern _ARMABI double asin(double /*x*/);
Xextern __declspec(__nothrow) double asin(double );
N /* computes the principal value of the arc sine of x */
N /* a domain error occurs for arguments not in the range -1 to 1 */
N /* and -HUGE_VAL is returned. */
N /* Returns: the arc sine in the range -Pi/2 to Pi/2. */
N
Nextern _ARMABI_PURE double atan(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double atan(double );
N /* computes the principal value of the arc tangent of x */
N /* Returns: the arc tangent in the range -Pi/2 to Pi/2. */
N
Nextern _ARMABI double atan2(double /*y*/, double /*x*/);
Xextern __declspec(__nothrow) double atan2(double , double );
N /* computes the principal value of the arc tangent of y/x, using the */
N /* signs of both arguments to determine the quadrant of the return value */
N /* a domain error occurs if both args are zero, and -HUGE_VAL returned. */
N /* Returns: the arc tangent of y/x, in the range -Pi to Pi. */
N
Nextern _ARMABI double cos(double /*x*/);
Xextern __declspec(__nothrow) double cos(double );
N /* computes the cosine of x (measured in radians). A large magnitude */
N /* argument may yield a result with little or no significance. */
N /* a domain error occurs for infinite input (C 7.12.1 footnote 196). */
N /* Returns: the cosine value. */
Nextern _ARMABI double sin(double /*x*/);
Xextern __declspec(__nothrow) double sin(double );
N /* computes the sine of x (measured in radians). A large magnitude */
N /* argument may yield a result with little or no significance. */
N /* a domain error occurs for infinite input (C 7.12.1 footnote 196). */
N /* Returns: the sine value. */
N
Nextern void __use_accurate_range_reduction(void);
N /* reference this to select the larger, slower, but more accurate */
N /* range reduction in sin, cos and tan */
N
Nextern _ARMABI double tan(double /*x*/);
Xextern __declspec(__nothrow) double tan(double );
N /* computes the tangent of x (measured in radians). A large magnitude */
N /* argument may yield a result with little or no significance */
N /* Returns: the tangent value. */
N /* if range error; returns HUGE_VAL. */
N
Nextern _ARMABI double cosh(double /*x*/);
Xextern __declspec(__nothrow) double cosh(double );
N /* computes the hyperbolic cosine of x. A range error occurs if the */
N /* magnitude of x is too large. */
N /* Returns: the hyperbolic cosine value. */
N /* if range error; returns HUGE_VAL. */
Nextern _ARMABI double sinh(double /*x*/);
Xextern __declspec(__nothrow) double sinh(double );
N /* computes the hyperbolic sine of x. A range error occurs if the */
N /* magnitude of x is too large. */
N /* Returns: the hyperbolic sine value. */
N /* if range error; returns -HUGE_VAL or HUGE_VAL depending */
N /* on the sign of the argument */
N
Nextern _ARMABI_PURE double tanh(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double tanh(double );
N /* computes the hyperbolic tangent of x. */
N /* Returns: the hyperbolic tangent value. */
N
Nextern _ARMABI double exp(double /*x*/);
Xextern __declspec(__nothrow) double exp(double );
N /* computes the exponential function of x. A range error occurs if the */
N /* magnitude of x is too large. */
N /* Returns: the exponential value. */
N /* if underflow range error; 0 is returned. */
N /* if overflow range error; HUGE_VAL is returned. */
N
Nextern _ARMABI double frexp(double /*value*/, int * /*exp*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) double frexp(double , int * ) __attribute__((__nonnull__(2)));
N /* breaks a floating-point number into a normalised fraction and an */
N /* integral power of 2. It stores the integer in the int object pointed */
N /* to by exp. */
N /* Returns: the value x, such that x is a double with magnitude in the */
N /* interval 0.5 to 1.0 or zero, and value equals x times 2 raised to the */
N /* power *exp. If value is zero, both parts of the result are zero. */
N
Nextern _ARMABI double ldexp(double /*x*/, int /*exp*/);
Xextern __declspec(__nothrow) double ldexp(double , int );
N /* multiplies a floating-point number by an integral power of 2. */
N /* A range error may occur. */
N /* Returns: the value of x times 2 raised to the power of exp. */
N /* if range error; HUGE_VAL is returned. */
Nextern _ARMABI double log(double /*x*/);
Xextern __declspec(__nothrow) double log(double );
N /* computes the natural logarithm of x. A domain error occurs if the */
N /* argument is negative, and -HUGE_VAL is returned. A range error occurs */
N /* if the argument is zero. */
N /* Returns: the natural logarithm. */
N /* if range error; -HUGE_VAL is returned. */
Nextern _ARMABI double log10(double /*x*/);
Xextern __declspec(__nothrow) double log10(double );
N /* computes the base-ten logarithm of x. A domain error occurs if the */
N /* argument is negative. A range error occurs if the argument is zero. */
N /* Returns: the base-ten logarithm. */
Nextern _ARMABI double modf(double /*value*/, double * /*iptr*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) double modf(double , double * ) __attribute__((__nonnull__(2)));
N /* breaks the argument value into integral and fraction parts, each of */
N /* which has the same sign as the argument. It stores the integral part */
N /* as a double in the object pointed to by iptr. */
N /* Returns: the signed fractional part of value. */
N
Nextern _ARMABI double pow(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double pow(double , double );
N /* computes x raised to the power of y. A domain error occurs if x is */
N /* zero and y is less than or equal to zero, or if x is negative and y */
N /* is not an integer, and -HUGE_VAL returned. A range error may occur. */
N /* Returns: the value of x raised to the power of y. */
N /* if underflow range error; 0 is returned. */
N /* if overflow range error; HUGE_VAL is returned. */
Nextern _ARMABI double sqrt(double /*x*/);
Xextern __declspec(__nothrow) double sqrt(double );
N /* computes the non-negative square root of x. A domain error occurs */
N /* if the argument is negative, and -HUGE_VAL returned. */
N /* Returns: the value of the square root. */
N
N#if defined(__TARGET_FPU_VFP_DOUBLE) && !defined(__TARGET_FPU_SOFTVFP)
X#if 0L && !1L
S _ARMABI_INLINE double _sqrt(double __x) { return __sqrt(__x); }
N#else
N _ARMABI_INLINE double _sqrt(double __x) { return sqrt(__x); }
X static __inline double _sqrt(double __x) { return sqrt(__x); }
N#endif
N#if defined(__TARGET_FPU_VFP_SINGLE) && !defined(__TARGET_FPU_SOFTVFP)
X#if 0L && !1L
S _ARMABI_INLINE float _sqrtf(float __x) { return __sqrtf(__x); }
N#else
N _ARMABI_INLINE float _sqrtf(float __x) { return (float)sqrt(__x); }
X static __inline float _sqrtf(float __x) { return (float)sqrt(__x); }
N#endif
N /* With VFP, _sqrt and _sqrtf should expand inline as the native VFP square root
N * instructions. They will not behave like the C sqrt() function, because
N * they will report unusual values as IEEE exceptions (in fpmodes which
N * support IEEE exceptions) rather than in errno. These function names
N * are not specified in any standard. */
N
Nextern _ARMABI_PURE double ceil(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double ceil(double );
N /* computes the smallest integer not less than x. */
N /* Returns: the smallest integer not less than x, expressed as a double. */
Nextern _ARMABI_PURE double fabs(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double fabs(double );
N /* computes the absolute value of the floating-point number x. */
N /* Returns: the absolute value of x. */
N
Nextern _ARMABI_PURE double floor(double /*d*/);
Xextern __declspec(__nothrow) __attribute__((const)) double floor(double );
N /* computes the largest integer not greater than x. */
N /* Returns: the largest integer not greater than x, expressed as a double */
N
Nextern _ARMABI double fmod(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double fmod(double , double );
N /* computes the floating-point remainder of x/y. */
N /* Returns: the value x - i * y, for some integer i such that, if y is */
N /* nonzero, the result has the same sign as x and magnitude */
N /* less than the magnitude of y. If y is zero, a domain error */
N /* occurs and -HUGE_VAL is returned. */
N
N /* Additional Mathlib functions not defined by the ANSI standard.
N * Not guaranteed, and not necessarily very well tested.
N * C99 requires the user to include <math.h> to use these functions
N * declaring them "by hand" is not sufficient
N *
N * The above statement is not completely true now. Some of the above
N * C99 functionality has been added as per the Standard, and (where
N * necessary) old Mathlib functionality withdrawn/changed. Before
N * including this header #define __ENABLE_MATHLIB_LEGACY if you want to
N * re-enable the legacy functionality.
N */
N
N#if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
X#if !0L || 1L
N
Nextern _ARMABI double acosh(double /*x*/);
Xextern __declspec(__nothrow) double acosh(double );
N /*
N * Inverse cosh. EDOM if argument < 1.0
N */
Nextern _ARMABI double asinh(double /*x*/);
Xextern __declspec(__nothrow) double asinh(double );
N /*
N * Inverse sinh.
N */
Nextern _ARMABI double atanh(double /*x*/);
Xextern __declspec(__nothrow) double atanh(double );
N /*
N * Inverse tanh. EDOM if |argument| > 1.0
N */
Nextern _ARMABI double cbrt(double /*x*/);
Xextern __declspec(__nothrow) double cbrt(double );
N /*
N * Cube root.
N */
N_ARMABI_INLINE _ARMABI_PURE double copysign(double __x, double __y)
Xstatic __inline __declspec(__nothrow) __attribute__((const)) double copysign(double __x, double __y)
N /*
N * Returns x with sign bit replaced by sign of y.
N */
N{
N __HI(__x) = (__HI(__x) & 0x7fffffff) | (__HI(__y) & 0x80000000);
X (*(1 + (unsigned *)&(__x))) = ((*(1 + (unsigned *)&(__x))) & 0x7fffffff) | ((*(1 + (unsigned *)&(__y))) & 0x80000000);
N return __x;
N}
N_ARMABI_INLINE _ARMABI_PURE float copysignf(float __x, float __y)
Xstatic __inline __declspec(__nothrow) __attribute__((const)) float copysignf(float __x, float __y)
N /*
N * Returns x with sign bit replaced by sign of y.
N */
N{
N __FLT(__x) = (__FLT(__x) & 0x7fffffff) | (__FLT(__y) & 0x80000000);
X (*(unsigned *)&(__x)) = ((*(unsigned *)&(__x)) & 0x7fffffff) | ((*(unsigned *)&(__y)) & 0x80000000);
N return __x;
N}
Nextern _ARMABI double erf(double /*x*/);
Xextern __declspec(__nothrow) double erf(double );
N /*
N * Error function. (2/sqrt(pi)) * integral from 0 to x of exp(-t*t) dt.
N */
Nextern _ARMABI double erfc(double /*x*/);
Xextern __declspec(__nothrow) double erfc(double );
N /*
N * 1-erf(x). (More accurate than just coding 1-erf(x), for large x.)
N */
Nextern _ARMABI double expm1(double /*x*/);
Xextern __declspec(__nothrow) double expm1(double );
N /*
N * exp(x)-1. (More accurate than just coding exp(x)-1, for small x.)
N */
N#define fpclassify(x) \
N ((sizeof(x) == sizeof(float)) ? \
N __ARM_fpclassifyf(x) : __ARM_fpclassify(x))
X#define fpclassify(x) ((sizeof(x) == sizeof(float)) ? __ARM_fpclassifyf(x) : __ARM_fpclassify(x))
N /*
N * Classify a floating point number into one of the following values:
N */
N#define FP_ZERO (0)
N#define FP_SUBNORMAL (4)
N#define FP_NORMAL (5)
N#define FP_INFINITE (3)
N#define FP_NAN (7)
N
N#if defined(_WANT_SNAN) && defined(__SUPPORT_SNAN__)
X#if 0L && 0L
S/*
S * Note that we'll never classify a number as FP_NAN, as all NaNs will
S * be either FP_NANQ or FP_NANS
S */
S# define FP_NANQ (8)
S# define FP_NANS (9)
N#endif
N
N
Nextern _ARMABI double hypot(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double hypot(double , double );
N /*
N * sqrt(x*x+y*y), ie the length of the vector (x,y) or the
N * hypotenuse of a right triangle whose other two sides are x
N * and y. Won't overflow unless the _answer_ is too big, even
N * if the intermediate x*x+y*y is too big.
N */
Nextern _ARMABI int ilogb(double /*x*/);
Xextern __declspec(__nothrow) int ilogb(double );
N /*
N * Exponent of x (returns 0 for 1.0, 1 for 2.0, -1 for 0.5, etc.)
N */
Nextern _ARMABI int ilogbf(float /*x*/);
Xextern __declspec(__nothrow) int ilogbf(float );
N /*
N * Like ilogb but takes a float
N */
Nextern _ARMABI int ilogbl(long double /*x*/);
Xextern __declspec(__nothrow) int ilogbl(long double );
N /*
N * Exponent of x (returns 0 for 1.0, 1 for 2.0, -1 for 0.5, etc.)
N */
N#define FP_ILOGB0 (-0x7fffffff) /* ilogb(0) == -INT_MAX */
N#define FP_ILOGBNAN ( 0x80000000) /* ilogb(NAN) == INT_MIN */
N
N#define isfinite(x) \
N ((sizeof(x) == sizeof(float)) \
N ? __ARM_isfinitef(x) \
N : __ARM_isfinite(x))
X#define isfinite(x) ((sizeof(x) == sizeof(float)) ? __ARM_isfinitef(x) : __ARM_isfinite(x))
N /*
N * Returns true if x is a finite number, size independent.
N */
N
N#define isgreater(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? ((__ARM_fcmp4((x), (y)) & 0xf0000000) == 0x20000000) \
N : ((__ARM_dcmp4((x), (y)) & 0xf0000000) == 0x20000000))
X#define isgreater(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? ((__ARM_fcmp4((x), (y)) & 0xf0000000) == 0x20000000) : ((__ARM_dcmp4((x), (y)) & 0xf0000000) == 0x20000000))
N /*
N * Returns true if x > y, throws no exceptions except on Signaling NaNs
N *
N * We want the C not set but the Z bit clear, V must be clear
N */
N
N#define isgreaterequal(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? ((__ARM_fcmp4((x), (y)) & 0x30000000) == 0x20000000) \
N : ((__ARM_dcmp4((x), (y)) & 0x30000000) == 0x20000000))
X#define isgreaterequal(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? ((__ARM_fcmp4((x), (y)) & 0x30000000) == 0x20000000) : ((__ARM_dcmp4((x), (y)) & 0x30000000) == 0x20000000))
N /*
N * Returns true if x >= y, throws no exceptions except on Signaling NaNs
N *
N * We just need to see if the C bit is set or not and ensure V clear
N */
N
N#define isinf(x) \
N ((sizeof(x) == sizeof(float)) \
N ? __ARM_isinff(x) \
N : __ARM_isinf(x))
X#define isinf(x) ((sizeof(x) == sizeof(float)) ? __ARM_isinff(x) : __ARM_isinf(x))
N /*
N * Returns true if x is an infinity, size independent.
N */
N
N#define isless(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? ((__ARM_fcmp4((x), (y)) & 0xf0000000) == 0x80000000) \
N : ((__ARM_dcmp4((x), (y)) & 0xf0000000) == 0x80000000))
X#define isless(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? ((__ARM_fcmp4((x), (y)) & 0xf0000000) == 0x80000000) : ((__ARM_dcmp4((x), (y)) & 0xf0000000) == 0x80000000))
N /*
N * Returns true if x < y, throws no exceptions except on Signaling NaNs
N *
N * We're less than if N is set, V clear
N */
N
N#define islessequal(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? ((__ARM_fcmp4((x), (y)) & 0xc0000000) != 0) \
N : ((__ARM_dcmp4((x), (y)) & 0xc0000000) != 0))
X#define islessequal(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? ((__ARM_fcmp4((x), (y)) & 0xc0000000) != 0) : ((__ARM_dcmp4((x), (y)) & 0xc0000000) != 0))
N /*
N * Returns true if x <= y, throws no exceptions except on Signaling NaNs
N *
N * We're less than or equal if one of N or Z is set, V clear
N */
N
N#define islessgreater(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? __ARM_islessgreaterf((x), (y)) \
N : __ARM_islessgreater((x), (y)))
X#define islessgreater(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? __ARM_islessgreaterf((x), (y)) : __ARM_islessgreater((x), (y)))
N /*
N * Returns true if x <> y, throws no exceptions except on Signaling NaNs
N * Unfortunately this test is too complicated to do in a macro without
N * evaluating x & y twice. Shame really...
N */
N
N#define isnan(x) \
N ((sizeof(x) == sizeof(float)) \
N ? __ARM_isnanf(x) \
N : __ARM_isnan(x))
X#define isnan(x) ((sizeof(x) == sizeof(float)) ? __ARM_isnanf(x) : __ARM_isnan(x))
N /*
N * Returns TRUE if x is a NaN.
N */
N
N#define isnormal(x) \
N ((sizeof(x) == sizeof(float)) \
N ? __ARM_isnormalf(x) \
N : __ARM_isnormal(x))
X#define isnormal(x) ((sizeof(x) == sizeof(float)) ? __ARM_isnormalf(x) : __ARM_isnormal(x))
N /*
N * Returns TRUE if x is a NaN.
N */
N
N#define isunordered(x, y) \
N (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) \
N ? ((__ARM_fcmp4((x), (y)) & 0x10000000) == 0x10000000) \
N : ((__ARM_dcmp4((x), (y)) & 0x10000000) == 0x10000000))
X#define isunordered(x, y) (((sizeof(x) == sizeof(float)) && (sizeof(y) == sizeof(float))) ? ((__ARM_fcmp4((x), (y)) & 0x10000000) == 0x10000000) : ((__ARM_dcmp4((x), (y)) & 0x10000000) == 0x10000000))
N /*
N * Returns true if x ? y, throws no exceptions except on Signaling NaNs
N * Unordered occurs if and only if the V bit is set
N */
N
Nextern _ARMABI double lgamma (double /*x*/);
Xextern __declspec(__nothrow) double lgamma (double );
N /*
N * The log of the absolute value of the gamma function of x. The sign
N * of the gamma function of x is returned in the global `signgam'.
N */
Nextern _ARMABI double log1p(double /*x*/);
Xextern __declspec(__nothrow) double log1p(double );
N /*
N * log(1+x). (More accurate than just coding log(1+x), for small x.)
N */
Nextern _ARMABI double logb(double /*x*/);
Xextern __declspec(__nothrow) double logb(double );
N /*
N * Like ilogb but returns a double.
N */
Nextern _ARMABI float logbf(float /*x*/);
Xextern __declspec(__nothrow) float logbf(float );
N /*
N * Like logb but takes and returns float
N */
Nextern _ARMABI long double logbl(long double /*x*/);
Xextern __declspec(__nothrow) long double logbl(long double );
N /*
N * Like logb but takes and returns long double
N */
Nextern _ARMABI double nextafter(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double nextafter(double , double );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI float nextafterf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float nextafterf(float , float );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI long double nextafterl(long double /*x*/, long double /*y*/);
Xextern __declspec(__nothrow) long double nextafterl(long double , long double );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI double nexttoward(double /*x*/, long double /*y*/);
Xextern __declspec(__nothrow) double nexttoward(double , long double );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI float nexttowardf(float /*x*/, long double /*y*/);
Xextern __declspec(__nothrow) float nexttowardf(float , long double );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI long double nexttowardl(long double /*x*/, long double /*y*/);
Xextern __declspec(__nothrow) long double nexttowardl(long double , long double );
N /*
N * Returns the next representable number after x, in the
N * direction toward y.
N */
Nextern _ARMABI double remainder(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double remainder(double , double );
N /*
N * Returns the remainder of x by y, in the IEEE 754 sense.
N */
Nextern _ARMABI_FPEXCEPT double rint(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double rint(double );
N /*
N * Rounds x to an integer, in the IEEE 754 sense.
N */
Nextern _ARMABI double scalbln(double /*x*/, long int /*n*/);
Xextern __declspec(__nothrow) double scalbln(double , long int );
N /*
N * Compute x times 2^n quickly.
N */
Nextern _ARMABI float scalblnf(float /*x*/, long int /*n*/);
Xextern __declspec(__nothrow) float scalblnf(float , long int );
N /*
N * Compute x times 2^n quickly.
N */
Nextern _ARMABI long double scalblnl(long double /*x*/, long int /*n*/);
Xextern __declspec(__nothrow) long double scalblnl(long double , long int );
N /*
N * Compute x times 2^n quickly.
N */
Nextern _ARMABI double scalbn(double /*x*/, int /*n*/);
Xextern __declspec(__nothrow) double scalbn(double , int );
N /*
N * Compute x times 2^n quickly.
N */
Nextern _ARMABI float scalbnf(float /*x*/, int /*n*/);
Xextern __declspec(__nothrow) float scalbnf(float , int );
N /*
N * Compute x times 2^n quickly.
N */
Nextern _ARMABI long double scalbnl(long double /*x*/, int /*n*/);
Xextern __declspec(__nothrow) long double scalbnl(long double , int );
N /*
N * Compute x times 2^n quickly.
N */
N#define signbit(x) \
N ((sizeof(x) == sizeof(float)) \
N ? __ARM_signbitf(x) \
N : __ARM_signbit(x))
X#define signbit(x) ((sizeof(x) == sizeof(float)) ? __ARM_signbitf(x) : __ARM_signbit(x))
N /*
N * Returns the signbit of x, size independent macro
N */
N#endif
N
N/* C99 float versions of functions. math.h has always reserved these
N identifiers for this purpose (7.13.4). */
Nextern _ARMABI_PURE float _fabsf(float); /* old ARM name */
Xextern __declspec(__nothrow) __attribute__((const)) float _fabsf(float);
N_ARMABI_INLINE _ARMABI_PURE float fabsf(float __f) { return _fabsf(__f); }
Xstatic __inline __declspec(__nothrow) __attribute__((const)) float fabsf(float __f) { return _fabsf(__f); }
Nextern _ARMABI float sinf(float /*x*/);
Xextern __declspec(__nothrow) float sinf(float );
Nextern _ARMABI float cosf(float /*x*/);
Xextern __declspec(__nothrow) float cosf(float );
Nextern _ARMABI float tanf(float /*x*/);
Xextern __declspec(__nothrow) float tanf(float );
Nextern _ARMABI float acosf(float /*x*/);
Xextern __declspec(__nothrow) float acosf(float );
Nextern _ARMABI float asinf(float /*x*/);
Xextern __declspec(__nothrow) float asinf(float );
Nextern _ARMABI float atanf(float /*x*/);
Xextern __declspec(__nothrow) float atanf(float );
Nextern _ARMABI float atan2f(float /*y*/, float /*x*/);
Xextern __declspec(__nothrow) float atan2f(float , float );
Nextern _ARMABI float sinhf(float /*x*/);
Xextern __declspec(__nothrow) float sinhf(float );
Nextern _ARMABI float coshf(float /*x*/);
Xextern __declspec(__nothrow) float coshf(float );
Nextern _ARMABI float tanhf(float /*x*/);
Xextern __declspec(__nothrow) float tanhf(float );
Nextern _ARMABI float expf(float /*x*/);
Xextern __declspec(__nothrow) float expf(float );
Nextern _ARMABI float logf(float /*x*/);
Xextern __declspec(__nothrow) float logf(float );
Nextern _ARMABI float log10f(float /*x*/);
Xextern __declspec(__nothrow) float log10f(float );
Nextern _ARMABI float powf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float powf(float , float );
Nextern _ARMABI float sqrtf(float /*x*/);
Xextern __declspec(__nothrow) float sqrtf(float );
Nextern _ARMABI float ldexpf(float /*x*/, int /*exp*/);
Xextern __declspec(__nothrow) float ldexpf(float , int );
Nextern _ARMABI float frexpf(float /*value*/, int * /*exp*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) float frexpf(float , int * ) __attribute__((__nonnull__(2)));
Nextern _ARMABI_PURE float ceilf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) float ceilf(float );
Nextern _ARMABI_PURE float floorf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) float floorf(float );
Nextern _ARMABI float fmodf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float fmodf(float , float );
Nextern _ARMABI float modff(float /*value*/, float * /*iptr*/) __attribute__((__nonnull__(2)));
Xextern __declspec(__nothrow) float modff(float , float * ) __attribute__((__nonnull__(2)));
N
N/* C99 long double versions of functions. */
N/* (also need to have 'using' declarations below) */
N#define _ARMDEFLD1(f) \
N _ARMABI long double f##l(long double /*x*/)
X#define _ARMDEFLD1(f) _ARMABI long double f##l(long double )
N
N#define _ARMDEFLD1P(f, T) \
N _ARMABI long double f##l(long double /*x*/, T /*p*/)
X#define _ARMDEFLD1P(f, T) _ARMABI long double f##l(long double , T )
N
N#define _ARMDEFLD2(f) \
N _ARMABI long double f##l(long double /*x*/, long double /*y*/)
X#define _ARMDEFLD2(f) _ARMABI long double f##l(long double , long double )
N
N/*
N * Long double versions of C89 functions can be defined
N * unconditionally, because C89 reserved these names in "future
N * library directions".
N */
N_ARMDEFLD1(acos);
X__declspec(__nothrow) long double acosl(long double );
N_ARMDEFLD1(asin);
X__declspec(__nothrow) long double asinl(long double );
N_ARMDEFLD1(atan);
X__declspec(__nothrow) long double atanl(long double );
N_ARMDEFLD2(atan2);
X__declspec(__nothrow) long double atan2l(long double , long double );
N_ARMDEFLD1(ceil);
X__declspec(__nothrow) long double ceill(long double );
N_ARMDEFLD1(cos);
X__declspec(__nothrow) long double cosl(long double );
N_ARMDEFLD1(cosh);
X__declspec(__nothrow) long double coshl(long double );
N_ARMDEFLD1(exp);
X__declspec(__nothrow) long double expl(long double );
N_ARMDEFLD1(fabs);
X__declspec(__nothrow) long double fabsl(long double );
N_ARMDEFLD1(floor);
X__declspec(__nothrow) long double floorl(long double );
N_ARMDEFLD2(fmod);
X__declspec(__nothrow) long double fmodl(long double , long double );
N_ARMDEFLD1P(frexp, int*) __attribute__((__nonnull__(2)));
X__declspec(__nothrow) long double frexpl(long double , int* ) __attribute__((__nonnull__(2)));
N_ARMDEFLD1P(ldexp, int);
X__declspec(__nothrow) long double ldexpl(long double , int );
N_ARMDEFLD1(log);
X__declspec(__nothrow) long double logl(long double );
N_ARMDEFLD1(log10);
X__declspec(__nothrow) long double log10l(long double );
N_ARMABI long double modfl(long double /*x*/, long double * /*p*/) __attribute__((__nonnull__(2)));
X__declspec(__nothrow) long double modfl(long double , long double * ) __attribute__((__nonnull__(2)));
N_ARMDEFLD2(pow);
X__declspec(__nothrow) long double powl(long double , long double );
N_ARMDEFLD1(sin);
X__declspec(__nothrow) long double sinl(long double );
N_ARMDEFLD1(sinh);
X__declspec(__nothrow) long double sinhl(long double );
N_ARMDEFLD1(sqrt);
X__declspec(__nothrow) long double sqrtl(long double );
N_ARMDEFLD1(tan);
X__declspec(__nothrow) long double tanl(long double );
N_ARMDEFLD1(tanh);
X__declspec(__nothrow) long double tanhl(long double );
N
N#if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
X#if !0L || 1L
N
N/*
N * C99 float and long double versions of extra-C89 functions.
N */
Nextern _ARMABI float acoshf(float /*x*/);
Xextern __declspec(__nothrow) float acoshf(float );
N_ARMDEFLD1(acosh);
X__declspec(__nothrow) long double acoshl(long double );
Nextern _ARMABI float asinhf(float /*x*/);
Xextern __declspec(__nothrow) float asinhf(float );
N_ARMDEFLD1(asinh);
X__declspec(__nothrow) long double asinhl(long double );
Nextern _ARMABI float atanhf(float /*x*/);
Xextern __declspec(__nothrow) float atanhf(float );
N_ARMDEFLD1(atanh);
X__declspec(__nothrow) long double atanhl(long double );
N_ARMDEFLD2(copysign);
X__declspec(__nothrow) long double copysignl(long double , long double );
Nextern _ARMABI float cbrtf(float /*x*/);
Xextern __declspec(__nothrow) float cbrtf(float );
N_ARMDEFLD1(cbrt);
X__declspec(__nothrow) long double cbrtl(long double );
Nextern _ARMABI float erff(float /*x*/);
Xextern __declspec(__nothrow) float erff(float );
N_ARMDEFLD1(erf);
X__declspec(__nothrow) long double erfl(long double );
Nextern _ARMABI float erfcf(float /*x*/);
Xextern __declspec(__nothrow) float erfcf(float );
N_ARMDEFLD1(erfc);
X__declspec(__nothrow) long double erfcl(long double );
Nextern _ARMABI float expm1f(float /*x*/);
Xextern __declspec(__nothrow) float expm1f(float );
N_ARMDEFLD1(expm1);
X__declspec(__nothrow) long double expm1l(long double );
Nextern _ARMABI float log1pf(float /*x*/);
Xextern __declspec(__nothrow) float log1pf(float );
N_ARMDEFLD1(log1p);
X__declspec(__nothrow) long double log1pl(long double );
Nextern _ARMABI float hypotf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float hypotf(float , float );
N_ARMDEFLD2(hypot);
X__declspec(__nothrow) long double hypotl(long double , long double );
Nextern _ARMABI float lgammaf(float /*x*/);
Xextern __declspec(__nothrow) float lgammaf(float );
N_ARMDEFLD1(lgamma);
X__declspec(__nothrow) long double lgammal(long double );
Nextern _ARMABI float remainderf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float remainderf(float , float );
N_ARMDEFLD2(remainder);
X__declspec(__nothrow) long double remainderl(long double , long double );
Nextern _ARMABI float rintf(float /*x*/);
Xextern __declspec(__nothrow) float rintf(float );
N_ARMDEFLD1(rint);
X__declspec(__nothrow) long double rintl(long double );
N
N#endif
N
N#if (defined(__clang__) && !defined(__STRICT_ANSI)) || defined(__USE_C99_MATH)
X#if (0L && !0L) || 1L
N/*
N * Functions new in C99.
N */
Nextern _ARMABI double exp2(double /*x*/); /* * 2.^x. */
Xextern __declspec(__nothrow) double exp2(double );
Nextern _ARMABI float exp2f(float /*x*/);
Xextern __declspec(__nothrow) float exp2f(float );
N_ARMDEFLD1(exp2);
X__declspec(__nothrow) long double exp2l(long double );
Nextern _ARMABI double fdim(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) double fdim(double , double );
Nextern _ARMABI float fdimf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) float fdimf(float , float );
N_ARMDEFLD2(fdim);
X__declspec(__nothrow) long double fdiml(long double , long double );
N#ifdef __FP_FAST_FMA
S#define FP_FAST_FMA
N#endif
N#ifdef __FP_FAST_FMAF
S#define FP_FAST_FMAF
N#endif
N#ifdef __FP_FAST_FMAL
S#define FP_FAST_FMAL
N#endif
Nextern _ARMABI double fma(double /*x*/, double /*y*/, double /*z*/);
Xextern __declspec(__nothrow) double fma(double , double , double );
Nextern _ARMABI float fmaf(float /*x*/, float /*y*/, float /*z*/);
Xextern __declspec(__nothrow) float fmaf(float , float , float );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI long double fmal(long double __x, long double __y, long double __z) \
N { return (long double)fma((double)__x, (double)__y, (double)__z); }
Xstatic __inline __declspec(__nothrow) long double fmal(long double __x, long double __y, long double __z) { return (long double)fma((double)__x, (double)__y, (double)__z); }
N#endif
Nextern _ARMABI_FPEXCEPT double fmax(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) __attribute__((const)) double fmax(double , double );
Nextern _ARMABI_FPEXCEPT float fmaxf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) __attribute__((const)) float fmaxf(float , float );
N_ARMDEFLD2(fmax);
X__declspec(__nothrow) long double fmaxl(long double , long double );
Nextern _ARMABI_FPEXCEPT double fmin(double /*x*/, double /*y*/);
Xextern __declspec(__nothrow) __attribute__((const)) double fmin(double , double );
Nextern _ARMABI_FPEXCEPT float fminf(float /*x*/, float /*y*/);
Xextern __declspec(__nothrow) __attribute__((const)) float fminf(float , float );
N_ARMDEFLD2(fmin);
X__declspec(__nothrow) long double fminl(long double , long double );
Nextern _ARMABI double log2(double /*x*/); /* * log base 2 of x. */
Xextern __declspec(__nothrow) double log2(double );
Nextern _ARMABI float log2f(float /*x*/);
Xextern __declspec(__nothrow) float log2f(float );
N_ARMDEFLD1(log2);
X__declspec(__nothrow) long double log2l(long double );
Nextern _ARMABI long lrint(double /*x*/);
Xextern __declspec(__nothrow) long lrint(double );
Nextern _ARMABI long lrintf(float /*x*/);
Xextern __declspec(__nothrow) long lrintf(float );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI long lrintl(long double __x) \
N { return lrint((double)__x); }
Xstatic __inline __declspec(__nothrow) long lrintl(long double __x) { return lrint((double)__x); }
N#endif
Nextern _ARMABI __LONGLONG llrint(double /*x*/);
Xextern __declspec(__nothrow) long long llrint(double );
Nextern _ARMABI __LONGLONG llrintf(float /*x*/);
Xextern __declspec(__nothrow) long long llrintf(float );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI __LONGLONG llrintl(long double __x) \
N { return llrint((double)__x); }
Xstatic __inline __declspec(__nothrow) long long llrintl(long double __x) { return llrint((double)__x); }
N#endif
Nextern _ARMABI long lround(double /*x*/);
Xextern __declspec(__nothrow) long lround(double );
Nextern _ARMABI long lroundf(float /*x*/);
Xextern __declspec(__nothrow) long lroundf(float );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI long lroundl(long double __x) \
N { return lround((double)__x); }
Xstatic __inline __declspec(__nothrow) long lroundl(long double __x) { return lround((double)__x); }
N#endif
Nextern _ARMABI __LONGLONG llround(double /*x*/);
Xextern __declspec(__nothrow) long long llround(double );
Nextern _ARMABI __LONGLONG llroundf(float /*x*/);
Xextern __declspec(__nothrow) long long llroundf(float );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI __LONGLONG llroundl(long double __x) \
N { return llround((double)__x); }
Xstatic __inline __declspec(__nothrow) long long llroundl(long double __x) { return llround((double)__x); }
N#endif
Nextern _ARMABI_PURE double nan(const char */*tagp*/);
Xextern __declspec(__nothrow) __attribute__((const)) double nan(const char * );
Nextern _ARMABI_PURE float nanf(const char */*tagp*/);
Xextern __declspec(__nothrow) __attribute__((const)) float nanf(const char * );
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE _ARMABI_PURE long double nanl(const char *__t) \
N { return (long double)nan(__t); }
Xstatic __inline __declspec(__nothrow) __attribute__((const)) long double nanl(const char *__t) { return (long double)nan(__t); }
N#endif
N#if defined(_WANT_SNAN) && defined(__SUPPORT_SNAN__)
X#if 0L && 0L
Sextern _ARMABI_PURE double nans(const char */*tagp*/);
Sextern _ARMABI_PURE float nansf(const char */*tagp*/);
S#ifdef __HAVE_LONGDOUBLE
S_ARMABI_INLINE _ARMABI_FPEXCEPT long double nansl(const char *__t) \
S { return (long double)nans(__t); }
X_ARMABI_INLINE _ARMABI_FPEXCEPT long double nansl(const char *__t) { return (long double)nans(__t); }
S#endif
N#endif
Nextern _ARMABI_FPEXCEPT double nearbyint(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double nearbyint(double );
Nextern _ARMABI_FPEXCEPT float nearbyintf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) float nearbyintf(float );
N_ARMDEFLD1(nearbyint);
X__declspec(__nothrow) long double nearbyintl(long double );
Nextern double remquo(double /*x*/, double /*y*/, int */*quo*/);
Nextern float remquof(float /*x*/, float /*y*/, int */*quo*/);
N#ifdef __HAVE_LONGDOUBLE
N_ARMABI_INLINE long double remquol(long double __x, long double __y, int *__q) \
N { return (long double)remquo((double)__x, (double)__y, __q); }
Xstatic __inline long double remquol(long double __x, long double __y, int *__q) { return (long double)remquo((double)__x, (double)__y, __q); }
N#endif
Nextern _ARMABI_FPEXCEPT double round(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double round(double );
Nextern _ARMABI_FPEXCEPT float roundf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) float roundf(float );
N_ARMDEFLD1(round);
X__declspec(__nothrow) long double roundl(long double );
Nextern _ARMABI double tgamma(double /*x*/); /* * The gamma function of x. */
Xextern __declspec(__nothrow) double tgamma(double );
Nextern _ARMABI float tgammaf(float /*x*/);
Xextern __declspec(__nothrow) float tgammaf(float );
N_ARMDEFLD1(tgamma);
X__declspec(__nothrow) long double tgammal(long double );
Nextern _ARMABI_FPEXCEPT double trunc(double /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) double trunc(double );
Nextern _ARMABI_FPEXCEPT float truncf(float /*x*/);
Xextern __declspec(__nothrow) __attribute__((const)) float truncf(float );
N_ARMDEFLD1(trunc);
X__declspec(__nothrow) long double truncl(long double );
N#endif
N
N#undef _ARMDEFLD1
N#undef _ARMDEFLD1P
N#undef _ARMDEFLD2
N
N#if defined(__cplusplus) && ((!defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)) || defined(__ARMCOMPILER_LIBCXX))
X#if 0L && ((!0L || 1L) || 0L)
S extern "C++" {
S inline int (fpclassify)(double __x) { return fpclassify(__x); }
S inline bool (isfinite)(double __x) { return isfinite(__x); }
S inline bool (isgreater)(double __x, double __y) { return isgreater(__x, __y); }
S inline bool (isgreaterequal)(double __x, double __y) { return isgreaterequal(__x, __y); }
S inline bool (isinf)(double __x) { return isinf(__x); }
S inline bool (isless)(double __x, double __y) { return isless(__x, __y); }
S inline bool (islessequal)(double __x, double __y) { return islessequal(__x, __y); }
S inline bool (islessgreater)(double __x, double __y) { return islessgreater(__x, __y); }
S inline bool (isnan)(double __x) { return isnan(__x); }
S inline bool (isnormal)(double __x) { return isnormal(__x); }
S inline bool (isunordered)(double __x, double __y) { return isunordered(__x, __y); }
S
S }
N#endif
N
N#if defined(__cplusplus) && !defined(__ARMCOMPILER_LIBCXX)
X#if 0L && !0L
S extern "C++" {
S inline float abs(float __x) { return fabsf(__x); }
S inline float acos(float __x) { return acosf(__x); }
S inline float asin(float __x) { return asinf(__x); }
S inline float atan(float __x) { return atanf(__x); }
S inline float atan2(float __y, float __x) { return atan2f(__y,__x); }
S inline float ceil(float __x) { return ceilf(__x); }
S inline float cos(float __x) { return cosf(__x); }
S inline float cosh(float __x) { return coshf(__x); }
S inline float exp(float __x) { return expf(__x); }
S inline float fabs(float __x) { return fabsf(__x); }
S inline float floor(float __x) { return floorf(__x); }
S inline float fmod(float __x, float __y) { return fmodf(__x, __y); }
S float frexp(float __x, int* __exp) __attribute__((__nonnull__(2)));
S inline float frexp(float __x, int* __exp) { return frexpf(__x, __exp); }
S inline float ldexp(float __x, int __exp) { return ldexpf(__x, __exp);}
S inline float log(float __x) { return logf(__x); }
S inline float log10(float __x) { return log10f(__x); }
S float modf(float __x, float* __iptr) __attribute__((__nonnull__(2)));
S inline float modf(float __x, float* __iptr) { return modff(__x, __iptr); }
S inline float pow(float __x, float __y) { return powf(__x,__y); }
S inline float pow(float __x, int __y) { return powf(__x, (float)__y); }
S inline float sin(float __x) { return sinf(__x); }
S inline float sinh(float __x) { return sinhf(__x); }
S inline float sqrt(float __x) { return sqrtf(__x); }
S inline float _sqrt(float __x) { return _sqrtf(__x); }
S inline float tan(float __x) { return tanf(__x); }
S inline float tanh(float __x) { return tanhf(__x); }
S
S inline double abs(double __x) { return fabs(__x); }
S inline double pow(double __x, int __y)
S { return pow(__x, (double) __y); }
S
S#ifdef __HAVE_LONGDOUBLE
S inline long double abs(long double __x)
S { return (long double)fabsl(__x); }
S inline long double acos(long double __x)
S { return (long double)acosl(__x); }
S inline long double asin(long double __x)
S { return (long double)asinl(__x); }
S inline long double atan(long double __x)
S { return (long double)atanl(__x); }
S inline long double atan2(long double __y, long double __x)
S { return (long double)atan2l(__y, __x); }
S inline long double ceil(long double __x)
S { return (long double)ceill( __x); }
S inline long double cos(long double __x)
S { return (long double)cosl(__x); }
S inline long double cosh(long double __x)
S { return (long double)coshl(__x); }
S inline long double exp(long double __x)
S { return (long double)expl(__x); }
S inline long double fabs(long double __x)
S { return (long double)fabsl(__x); }
S inline long double floor(long double __x)
S { return (long double)floorl(__x); }
S inline long double fmod(long double __x, long double __y)
S { return (long double)fmodl(__x, __y); }
S long double frexp(long double __x, int* __p) __attribute__((__nonnull__(2)));
S inline long double frexp(long double __x, int* __p)
S { return (long double)frexpl(__x, __p); }
S inline long double ldexp(long double __x, int __exp)
S { return (long double)ldexpl(__x, __exp); }
S inline long double log(long double __x)
S { return (long double)logl(__x); }
S inline long double log10(long double __x)
S { return (long double)log10l(__x); }
S long double modf(long double __x, long double* __p) __attribute__((__nonnull__(2)));
S inline long double modf(long double __x, long double* __p)
S { return (long double)modfl(__x, __p); }
S inline long double pow(long double __x, long double __y)
S { return (long double)powl(__x, __y); }
S inline long double pow(long double __x, int __y)
S { return (long double)powl(__x, __y); }
S inline long double sin(long double __x)
S { return (long double)sinl(__x); }
S inline long double sinh(long double __x)
S { return (long double)sinhl(__x); }
S inline long double sqrt(long double __x)
S { return (long double)sqrtl(__x); }
S inline long double _sqrt(long double __x)
S { return (long double)_sqrt((double) __x); }
S inline long double tan(long double __x)
S { return (long double)tanl(__x); }
S inline long double tanh(long double __x)
S { return (long double)tanhl(__x); }
S#endif
S
S#if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
S inline float acosh(float __x) { return acoshf(__x); }
S inline float asinh(float __x) { return asinhf(__x); }
S inline float atanh(float __x) { return atanhf(__x); }
S inline float cbrt(float __x) { return cbrtf(__x); }
S inline float erf(float __x) { return erff(__x); }
S inline float erfc(float __x) { return erfcf(__x); }
S inline float expm1(float __x) { return expm1f(__x); }
S inline float log1p(float __x) { return log1pf(__x); }
S inline float hypot(float __x, float __y) { return hypotf(__x, __y); }
S inline float lgamma(float __x) { return lgammaf(__x); }
S inline float remainder(float __x, float __y) { return remainderf(__x, __y); }
S inline float rint(float __x) { return rintf(__x); }
S#endif
S
S#ifdef __USE_C99_MATH
S inline float exp2(float __x) { return exp2f(__x); }
S inline float fdim(float __x, float __y) { return fdimf(__x, __y); }
S inline float fma(float __x, float __y, float __z) { return fmaf(__x, __y, __z); }
S inline float fmax(float __x, float __y) { return fmaxf(__x, __y); }
S inline float fmin(float __x, float __y) { return fminf(__x, __y); }
S inline float log2(float __x) { return log2f(__x); }
S inline _ARMABI long lrint(float __x) { return lrintf(__x); }
S inline _ARMABI __LONGLONG llrint(float __x) { return llrintf(__x); }
S inline _ARMABI long lround(float __x) { return lroundf(__x); }
S inline _ARMABI __LONGLONG llround(float __x) { return llroundf(__x); }
S inline _ARMABI_FPEXCEPT float nearbyint(float __x) { return nearbyintf(__x); }
S inline float remquo(float __x, float __y, int *__q) { return remquof(__x, __y, __q); }
S inline _ARMABI_FPEXCEPT float round(float __x) { return roundf(__x); }
S inline float tgamma(float __x) { return tgammaf(__x); }
S inline _ARMABI_FPEXCEPT float trunc(float __x) { return truncf(__x); }
S
S inline int (fpclassify)(float __x) { return fpclassify(__x); }
S inline bool (isfinite)(float __x) { return isfinite(__x); }
S inline bool (isgreater)(float __x, float __y) { return isgreater(__x, __y); }
S inline bool (isgreaterequal)(float __x, float __y) { return isgreaterequal(__x, __y); }
S inline bool (isinf)(float __x) { return isinf(__x); }
S inline bool (isless)(float __x, float __y) { return isless(__x, __y); }
S inline bool (islessequal)(float __x, float __y) { return islessequal(__x, __y); }
S inline bool (islessgreater)(float __x, float __y) { return islessgreater(__x, __y); }
S inline bool (isnan)(float __x) { return isnan(__x); }
S inline bool (isnormal)(float __x) { return isnormal(__x); }
S inline bool (isunordered)(float __x, float __y) { return isunordered(__x, __y); }
S
S#ifdef __HAVE_LONGDOUBLE
S inline long double acosh(long double __x) { return acoshl(__x); }
S inline long double asinh(long double __x) { return asinhl(__x); }
S inline long double atanh(long double __x) { return atanhl(__x); }
S inline long double cbrt(long double __x) { return cbrtl(__x); }
S inline long double erf(long double __x) { return erfl(__x); }
S inline long double erfc(long double __x) { return erfcl(__x); }
S inline long double expm1(long double __x) { return expm1l(__x); }
S inline long double log1p(long double __x) { return log1pl(__x); }
S inline long double hypot(long double __x, long double __y) { return hypotl(__x, __y); }
S inline long double lgamma(long double __x) { return lgammal(__x); }
S inline long double remainder(long double __x, long double __y) { return remainderl(__x, __y); }
S inline long double rint(long double __x) { return rintl(__x); }
S inline long double exp2(long double __x) { return exp2l(__x); }
S inline long double fdim(long double __x, long double __y) { return fdiml(__x, __y); }
S inline long double fma(long double __x, long double __y, long double __z) { return fmal(__x, __y, __z); }
S inline long double fmax(long double __x, long double __y) { return fmaxl(__x, __y); }
S inline long double fmin(long double __x, long double __y) { return fminl(__x, __y); }
S inline long double log2(long double __x) { return log2l(__x); }
S inline _ARMABI long lrint(long double __x) { return lrintl(__x); }
S inline _ARMABI __LONGLONG llrint(long double __x) { return llrintl(__x); }
S inline _ARMABI long lround(long double __x) { return lroundl(__x); }
S inline _ARMABI __LONGLONG llround(long double __x) { return llroundl(__x); }
S inline _ARMABI_FPEXCEPT long double nearbyint(long double __x) { return nearbyintl(__x); }
S inline long double remquo(long double __x, long double __y, int *__q) { return remquol(__x, __y, __q); }
S inline _ARMABI_FPEXCEPT long double round(long double __x) { return roundl(__x); }
S inline long double tgamma(long double __x) { return tgammal(__x); }
S inline _ARMABI_FPEXCEPT long double trunc(long double __x) { return truncl(__x); }
S inline int (fpclassify)(long double __x) { return fpclassify(__x); }
S inline bool (isfinite)(long double __x) { return isfinite(__x); }
S inline bool (isgreater)(long double __x, long double __y) { return isgreater(__x, __y); }
S inline bool (isgreaterequal)(long double __x, long double __y) { return isgreaterequal(__x, __y); }
S inline bool (isinf)(long double __x) { return isinf(__x); }
S inline bool (isless)(long double __x, long double __y) { return isless(__x, __y); }
S inline bool (islessequal)(long double __x, long double __y) { return islessequal(__x, __y); }
S inline bool (islessgreater)(long double __x, long double __y) { return islessgreater(__x, __y); }
S inline bool (isnan)(long double __x) { return isnan(__x); }
S inline bool (isnormal)(long double __x) { return isnormal(__x); }
S inline bool (isunordered)(long double __x, long double __y) { return isunordered(__x, __y); }
S#endif
S
S#undef fpclassify
S#undef isfinite
S#undef isgreater
S#undef isgreaterequal
S#undef isinf
S#undef isless
S#undef islessequal
S#undef islessgreater
S#undef isnan
S#undef isnormal
S#undef isunordered
S
S#endif
S
S }
N#endif
N
N #ifdef __cplusplus
S } /* extern "C" */
S } /* namespace std */
N #endif
N #endif /* __MATH_DECLS */
N
N #if _AEABI_PORTABILITY_LEVEL != 0 && !defined _AEABI_PORTABLE
X #if _AEABI_PORTABILITY_LEVEL != 0 && !0L
S #define _AEABI_PORTABLE
N #endif
N
N #if defined(__cplusplus) && !defined(__MATH_NO_EXPORTS)
X #if 0L && !0L
S using ::std::__use_accurate_range_reduction;
S #ifndef __ARMCOMPILER_LIBCXX
S using ::std::abs;
S #endif
S using ::std::acos;
S using ::std::asin;
S using ::std::atan2;
S using ::std::atan;
S using ::std::ceil;
S using ::std::cos;
S using ::std::cosh;
S using ::std::exp;
S using ::std::fabs;
S using ::std::floor;
S using ::std::fmod;
S using ::std::frexp;
S using ::std::ldexp;
S using ::std::log10;
S using ::std::log;
S using ::std::modf;
S using ::std::pow;
S using ::std::sin;
S using ::std::sinh;
S using ::std::sqrt;
S using ::std::_sqrt;
S using ::std::_sqrtf;
S using ::std::tan;
S using ::std::tanh;
S using ::std::_fabsf;
S /* C99 float and long double versions in already-C89-reserved namespace */
S using ::std::acosf;
S using ::std::acosl;
S using ::std::asinf;
S using ::std::asinl;
S using ::std::atan2f;
S using ::std::atan2l;
S using ::std::atanf;
S using ::std::atanl;
S using ::std::ceilf;
S using ::std::ceill;
S using ::std::cosf;
S using ::std::coshf;
S using ::std::coshl;
S using ::std::cosl;
S using ::std::expf;
S using ::std::expl;
S using ::std::fabsf;
S using ::std::fabsl;
S using ::std::floorf;
S using ::std::floorl;
S using ::std::fmodf;
S using ::std::fmodl;
S using ::std::frexpf;
S using ::std::frexpl;
S using ::std::ldexpf;
S using ::std::ldexpl;
S using ::std::log10f;
S using ::std::log10l;
S using ::std::logf;
S using ::std::logl;
S using ::std::modff;
S using ::std::modfl;
S using ::std::powf;
S using ::std::powl;
S using ::std::sinf;
S using ::std::sinhf;
S using ::std::sinhl;
S using ::std::sinl;
S using ::std::sqrtf;
S using ::std::sqrtl;
S using ::std::tanf;
S using ::std::tanhf;
S using ::std::tanhl;
S using ::std::tanl;
S #if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
S /* C99 additions which for historical reasons appear in non-strict mode */
S using ::std::acosh;
S using ::std::asinh;
S using ::std::atanh;
S using ::std::cbrt;
S using ::std::copysign;
S using ::std::copysignf;
S using ::std::erf;
S using ::std::erfc;
S using ::std::expm1;
S using ::std::hypot;
S using ::std::ilogb;
S using ::std::ilogbf;
S using ::std::ilogbl;
S using ::std::lgamma;
S using ::std::log1p;
S using ::std::logb;
S using ::std::logbf;
S using ::std::logbl;
S using ::std::nextafter;
S using ::std::nextafterf;
S using ::std::nextafterl;
S using ::std::nexttoward;
S using ::std::nexttowardf;
S using ::std::nexttowardl;
S using ::std::remainder;
S using ::std::rint;
S using ::std::scalbln;
S using ::std::scalblnf;
S using ::std::scalblnl;
S using ::std::scalbn;
S using ::std::scalbnf;
S using ::std::scalbnl;
S using ::std::math_errhandling;
S using ::std::acoshf;
S using ::std::acoshl;
S using ::std::asinhf;
S using ::std::asinhl;
S using ::std::atanhf;
S using ::std::atanhl;
S using ::std::copysignl;
S using ::std::cbrtf;
S using ::std::cbrtl;
S using ::std::erff;
S using ::std::erfl;
S using ::std::erfcf;
S using ::std::erfcl;
S using ::std::expm1f;
S using ::std::expm1l;
S using ::std::log1pf;
S using ::std::log1pl;
S using ::std::hypotf;
S using ::std::hypotl;
S using ::std::lgammaf;
S using ::std::lgammal;
S using ::std::remainderf;
S using ::std::remainderl;
S using ::std::rintf;
S using ::std::rintl;
S /* New in C99. */
S using ::std::float_t;
S using ::std::double_t;
S #endif
S #if (defined(__clang__) && !defined(__STRICT_ANSI)) || defined(__USE_C99_MATH)
S /* Functions new in C99. */
S using ::std::exp2;
S using ::std::exp2f;
S using ::std::exp2l;
S using ::std::fdim;
S using ::std::fdimf;
S using ::std::fdiml;
S using ::std::fma;
S using ::std::fmaf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::fmal;
S#endif
S using ::std::fmax;
S using ::std::fmaxf;
S using ::std::fmaxl;
S using ::std::fmin;
S using ::std::fminf;
S using ::std::fminl;
S using ::std::log2;
S using ::std::log2f;
S using ::std::log2l;
S using ::std::lrint;
S using ::std::lrintf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::lrintl;
S#endif
S using ::std::llrint;
S using ::std::llrintf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::llrintl;
S#endif
S using ::std::lround;
S using ::std::lroundf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::lroundl;
S#endif
S using ::std::llround;
S using ::std::llroundf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::llroundl;
S#endif
S using ::std::nan;
S using ::std::nanf;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::nanl;
S#endif
S using ::std::nearbyint;
S using ::std::nearbyintf;
S using ::std::nearbyintl;
S using ::std::remquo;
S using ::std::remquof;
S#ifdef __HAVE_LONGDOUBLE
S using ::std::remquol;
S#endif
S using ::std::round;
S using ::std::roundf;
S using ::std::roundl;
S using ::std::tgamma;
S using ::std::tgammaf;
S using ::std::tgammal;
S using ::std::trunc;
S using ::std::truncf;
S using ::std::truncl;
S #endif
S
S #if !defined(__STRICT_ANSI__) || defined(__USE_C99_MATH)
S using ::std::fpclassify;
S using ::std::isfinite;
S using ::std::isgreater;
S using ::std::isgreaterequal;
S using ::std::isinf;
S using ::std::isless;
S using ::std::islessequal;
S using ::std::islessgreater;
S using ::std::isnan;
S using ::std::isnormal;
S using ::std::isunordered;
S #endif
N #endif
N
N#undef __LONGLONG
N
N#endif /* __math_h */
N
N/* end of math.h */
L 19 "..\src\common\tau_common.h" 2
N
N/*******************************************************************************
N* 2.Global constant and macro definitions using #define
N*******************************************************************************/
N/**
N * \name ͨ<>ó<EFBFBD><C3B3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N * @{
N */
N//#define ENABLE 1
N//#define DISABLE 0
N
N#define ON 1
N#define OFF 0
N
N#define NONE 0
N#define EOS '\0'
N
N/*
N#ifndef TRUE
N#define TRUE 1
N#endif
N
N#ifndef FALSE
N#define FALSE 0
N#endif
N*/
N
N#ifndef __cplusplus
N #define true 1
N #define false 0
N #define bool _Bool
N#endif /* ifndef __cplusplus */
N
N#ifndef NULL
S #define NULL ((void *)0)
N#endif
N
N#define TAU_LITTLE_ENDIAN 1234 /**< \brief С<><D0A1>ģʽ */
N#define TAU_BIG_ENDIAN 3412 /**< \brief <20><><EFBFBD><EFBFBD>ģʽ */
N
N/** @} */
N
N/******************************************************************************/
N
N/**
N * \name <20><><EFBFBD>ú궨<C3BA><EAB6A8>
N * @{
N */
N
N#ifdef __cplusplus
S #define __I volatile /*!< Defines 'read only' permissions */
N#else
N #define __I volatile const /*!< Defines 'read only' permissions */
N#endif
N#define __O volatile /*!< Defines 'write only' permissions */
N#define __IO volatile /*!< Defines 'read / write' permissions */
N
N#define TAU_INLINE inline
N#define TAU_STATIC_INLINE static inline
N#define TAU_STATIC static
N#define TAU_CONST const
N#define TAU_EXTERN extern
N
N#define MIN(x, y) (((x) < (y)) ? (x) : (y))
N#define MAX(x, y) (((x) > (y)) ? (x) : (y))
N
N/**
N * \brief <20><><EFBFBD><EFBFBD><E1B9B9><EFBFBD><EFBFBD>Ա<EFBFBD><D4B1>ƫ<EFBFBD><C6AB>
N * \attention <20><>ͬƽ̨<C6BD>ϣ<EFBFBD><CFA3><EFBFBD><EFBFBD>ڳ<EFBFBD>Ա<EFBFBD><D4B1>С<EFBFBD><D0A1><EFBFBD>ڴ<EFBFBD><DAB4><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ԭ<EFBFBD><D4AD><EFBFBD><EFBFBD>
N * ͬһ<CDAC><EFBFBD><E1B9B9><EFBFBD><EFBFBD>Ա<EFBFBD><D4B1>ƫ<EFBFBD>ƿ<EFBFBD><C6BF><EFBFBD><EFBFBD>Dz<EFBFBD>һ<EFBFBD><D2BB><EFBFBD><EFBFBD>
N *
N * \par ʾ<><CABE>
N * \code
N * struct my_struct {
N * int m1;
N * char m2;
N * };
N * int offset_m2;
N *
N * offset_m2 = TAU_OFFSET(struct my_struct, m2);
N * \endcode
N */
N#define TAU_OFFSET(structure, member) ((uint32_t)(&(((structure *)0)->member)))
N
N/** @} */
N
N/**
N * \brief ͨ<><CDA8><EFBFBD><EFBFBD><E1B9B9><EFBFBD><EFBFBD>Աָ<D4B1><D6B8><EFBFBD><EFBFBD>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD>ýṹ<C3BD><E1B9B9><EFBFBD><EFBFBD>Ա<EFBFBD>Ľṹ<C4BD><E1B9B9>
N *
N * \param ptr ָ<><D6B8><EFBFBD><EFBFBD><E1B9B9><EFBFBD><EFBFBD>Ա<EFBFBD><D4B1>ָ<EFBFBD><D6B8>
N * \param type <20><EFBFBD><E1B9B9><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N * \param member <20><EFBFBD><E1B9B9><EFBFBD>иó<D0B8>Ա<EFBFBD><D4B1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N *
N * \par ʾ<><CABE>
N * \code
N * struct my_struct = {
N * int m1;
N * char m2;
N * };
N * struct my_struct my_st;
N * char *p_m2 = &my_st.m2;
N * struct my_struct *p_st = TAU_CONTAINER_OF(p_m2, struct my_struct, m2);
N * \endcode
N */
N#define TAU_CONTAINER_OF(ptr, type, member) \
N ((type *)((char *)(ptr)-TAU_OFFSET(type, member)))
X#define TAU_CONTAINER_OF(ptr, type, member) ((type *)((char *)(ptr)-TAU_OFFSET(type, member)))
N
N/**
N * \brief <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><E1B9B9><EFBFBD><EFBFBD>Ա<EFBFBD>Ĵ<EFBFBD>С
N *
N * \code
N * struct a = {
N * uint32_t m1;
N * uint32_t m2;
N * };
N * int size_m2;
N *
N * size_m2 = TAU_MEMBER_SIZE(a, m2); //size_m2 = 4
N * \endcode
N */
N#define TAU_MEMBER_SIZE(structure, member) (sizeof(((structure *)0)->member))
N
N/**
N * \brief <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ԫ<EFBFBD>ظ<EFBFBD><D8B8><EFBFBD>
N *
N * \code
N * int a[] = {0, 1, 2, 3};
N * int element_a = TAU_NELEMENTS(a); // element_a = 4
N * \endcode
N */
N#define TAU_NELEMENTS(array) (sizeof(array) / sizeof((array)[0]))
N
N/**
N * \brief <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N *
N * \param x <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N * \param align <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N *
N * \code
N * int size = TAU_ROUND_UP(15, 4); // size = 16
N * \endcode
N */
N#define TAU_ROUND_UP(x, align) (((int)(x)/(align))*(align) + (((int)(x)%(align)) ? (align) : 0))
N
N/**
N * \brief <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N *
N * \param x <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N * \param align <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N *
N * \code
N * int size = TAU_ROUND_DOWN(15, 4); // size = 12
N * \endcode
N */
N#define TAU_ROUND_DOWN(x, align) (((int)(x)/(align))*(align))
N
N/** \brief <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
N#define TAU_DIV_ROUND_UP(n, d) (((n) + (d)-1) / (d))
N
N/**
N * \brief <20><><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD><C7B7><EFBFBD><EFBFBD><EFBFBD>
N *
N * \param x <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N * \param align <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>أ<EFBFBD><D8A3><EFBFBD><EFBFBD><EFBFBD>Ϊ2<CEAA>ij˷<C4B3>
N *
N * \code
N * if (TAU_ALIGNED(x, 4) {
N * ; // x<><78><EFBFBD><EFBFBD>
N * } else {
N * ; // x<><78><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N * }
N * \endcode
N */
N#define TAU_ALIGNED(x, align) (((int)(x) & (align - 1)) == 0)
N
N/** \brief <20><>1<EFBFBD>ֽ<EFBFBD>BCD<43><44><EFBFBD><EFBFBD>ת<EFBFBD><D7AA>Ϊ16<31><36><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
N#define TAU_BCD_TO_HEX(val) (((val)&0x0f) + ((val) >> 4) * 10)
N
N/** \brief <20><>1<EFBFBD>ֽ<EFBFBD>16<31><36><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><D7AA>ΪBCD<43><44><EFBFBD><EFBFBD> */
N#define TAU_HEX_TO_BCD(val) ((((val) / 10) << 4) + (val) % 10)
N
N/**
N * \brief <20><><EFBFBD><EFBFBD>ȡ<EFBFBD><C8A1>
N */
N#define TAU_CEIL(val) ceil(val)
N
N
N/*! @brief Construct the version number for drivers. */
N#define MAKE_VERSION(major, minor, bugfix) (((major) << 16) | ((minor) << 8) | (bugfix))
N
N
N/*******************************************************************************
N* 3.Global structures, unions and enumerations using typedef
N*******************************************************************************/
N/* \brief ͨ<>ûص<C3BB><D8B5><EFBFBD><EFBFBD><EFBFBD>ָ<EFBFBD><EFBFBD><EBB6A8> */
Ntypedef void (*fcb_type)(void *data);
N
N#endif /* __TAU_COMMON_H */
L 21 "..\src\common\tau_device_datatype.h" 2
N
N/*******************************************************************************
N* 2.Global constant and macro definitions using #define
N*******************************************************************************/
N
N/*******************************************************************************
N* 3.Global structures, unions and enumerations using typedef
N*******************************************************************************/
N/*! @brief <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>״̬<D7B4><CCAC> */
N#define MAKE_STATUS(group, code) ((((group)*100) + (code)))
N
N/*******************************************************************************
N* 3.Global structures, unions and enumerations using typedef
N*******************************************************************************/
N/*! @brief <20><><EFBFBD><EFBFBD>״ֵ̬ */
Nenum _status_groups
N{
N STATUS_GROUP_GENERIC = 0,
N STATUS_GROUP_I2C = 1,
N STATUS_GROUP_UART = 2,
N STATUS_GROUP_SPI = 3,
N kStatusGroup_Timer = 4,
N};
N
N/*! @brief <20><><EFBFBD><EFBFBD>״̬<D7B4><CCAC> */
Nenum _generic_status
N{
N STATUS_SUCCESS = MAKE_STATUS(STATUS_GROUP_GENERIC, 0),
X STATUS_SUCCESS = ((((STATUS_GROUP_GENERIC)*100) + (0))),
N STATUS_FAIL = MAKE_STATUS(STATUS_GROUP_GENERIC, 1),
X STATUS_FAIL = ((((STATUS_GROUP_GENERIC)*100) + (1))),
N STATUS_READ_ONLY = MAKE_STATUS(STATUS_GROUP_GENERIC, 2),
X STATUS_READ_ONLY = ((((STATUS_GROUP_GENERIC)*100) + (2))),
N STATUS_OUT_OF_RANGE = MAKE_STATUS(STATUS_GROUP_GENERIC, 3),
X STATUS_OUT_OF_RANGE = ((((STATUS_GROUP_GENERIC)*100) + (3))),
N STATUS_INVALID_ARGUMENT = MAKE_STATUS(STATUS_GROUP_GENERIC, 4),
X STATUS_INVALID_ARGUMENT = ((((STATUS_GROUP_GENERIC)*100) + (4))),
N STATUS_TIME_OUT = MAKE_STATUS(STATUS_GROUP_GENERIC, 5),
X STATUS_TIME_OUT = ((((STATUS_GROUP_GENERIC)*100) + (5))),
N STATUS_NO_TRANSFER_IN_PROGRESS = MAKE_STATUS(STATUS_GROUP_GENERIC, 6),
X STATUS_NO_TRANSFER_IN_PROGRESS = ((((STATUS_GROUP_GENERIC)*100) + (6))),
N};
N
N/*!
N * @brief timer״̬
N */
Ntypedef enum
N{
N TIMER_STATUS_IDLE = MAKE_STATUS(kStatusGroup_Timer, 0), /*!< <20><><EFBFBD><EFBFBD> */
X TIMER_STATUS_IDLE = ((((kStatusGroup_Timer)*100) + (0))),
N TIMER_STATUS_RUNNING = MAKE_STATUS(kStatusGroup_Timer, 1), /*!< <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> */
X TIMER_STATUS_RUNNING = ((((kStatusGroup_Timer)*100) + (1))),
N TIMER_STATUS_TIMEOUT = MAKE_STATUS(kStatusGroup_Timer, 2), /*!< <20><>ʱ */
X TIMER_STATUS_TIMEOUT = ((((kStatusGroup_Timer)*100) + (2))),
N} timer_status_e;
N
N/*!
N * @brief system<65><6D><EFBFBD><EFBFBD><EFBFBD>¼<EFBFBD>(<28>ж<EFBFBD>/<2F><>λ)ģʽ
N */
Ntypedef enum
N{
N DETECT_HIGH_LVL = 0,
N DETECT_LOW_LVL,
N DETECT_RISING_EDGE,
N DETECT_FALLING_EDGE
N} sys_cfg_trigger_e;
N
N/**
N* @brief GPIO interrupt type
N*/
Ntypedef enum
N{
N TIMER_NUM0 = 0,
N TIMER_NUM1,
N TIMER_NUM2,
N TIMER_NUM3,
N TIMER_NUM_MAX
N} timer_num_e;
N
N/**
N* @brief GPIO interrupt type
N*/
Ntypedef enum
N{
N GPIO_INT_EXTI_INT0 = 0,
N GPIO_INT_EXTI_INT1,
N GPIO_INT_EXTI_INT2,
N GPIO_INT_EXTI_INT3,
N GPIO_INT_EXTI_INT4,
N GPIO_INT_EXTI_INT5,
N GPIO_INT_EXTI_INT6,
N GPIO_INT_EXTI_INT7,
N GPIO_INT_MAX
N} gpio_int_e;
N
N/*! @brief PWMI<4D>ж<EFBFBD><D0B6><EFBFBD><EFBFBD><EFBFBD> */
Ntypedef enum _pwm_int_type
N{
N PWM_INT_HIGH_OVERFLOW = 0,
N PWM_INT_LOW_OVERFLOW,
N PWM_INT_TOTAL_OVERFLOW,
N PWM_INT_HIGH_DONE,
N PWM_INT_LOW_DONE,
N PWM_INT_TOTAL_DONE,
N PWM_INT_MAX
N} pwm_int_type_e;
N
N/**
N* @brief I2C chose
N*/
Ntypedef enum
N{
N I2C_SELECT_0 = 0, //<2F><><EFBFBD><EFBFBD>slave
N I2C_SELECT_1, //<2F><><EFBFBD><EFBFBD>master
N} i2c_select_e;
N
N/*!
N * @brief <20><><EFBFBD><EFBFBD><EFBFBD>ٶ<EFBFBD>
N * @note
N */
Ntypedef enum _i2c_rate
N{
N I2C_RATE_STANDARD = 1, //100kHz
N I2C_RATE_FAST, //400kHz
N I2C_RATE_HIGH, //1MHz
N} i2c_rate_e;
N
N/*! @brief DMA channel type */
Ntypedef enum
N{
N DMA_CH0 = 0, /*!< SPIM */
N DMA_CH1 = 1, /*!< IIC0 */
N DMA_CH2 = 2, /*!< SPIS */
N DMA_CH3 = 3, /*!< IIC1 */
N DMA_CH4 = 4, /*!< SPI FLASH */
N DMA_CH5 = 5, /*!< UART */
N} dma_channel_e;
N
N
N/*! @brief Type used for all status and error return values. */
N
Ntypedef enum
N{
N DISABLE = 0,
N ENABLE = !DISABLE
N} function_state_e;
N/*!< @brief <20><><EFBFBD>ڷ<EFBFBD><DAB7><EFBFBD>״̬<D7B4>ʹ<EFBFBD><CDB4><EFBFBD> */
Ntypedef int32_t status_t;
N
N
N
N/*******************************************************************************
N* 4.Global variable extern declarations
N*******************************************************************************/
N
N#endif
N
L 16 "..\src\app\demo\app_tp_for_custom_s8.h" 2
N#include "tau_common.h"
N#include "app_tp_transfer.h"
L 1 "..\src\app\demo\app_tp_transfer.h" 1
N/*******************************************************************************
N*
N*
N* File: app_tp_transfer.h
N* Description touch I2C/SPI ͨ<><CDA8><EFBFBD><EFBFBD><EFBFBD>غ<EFBFBD><D8BA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N* Version V0.1
N* Date 2021-10-14
N* Author zhanghz
N*******************************************************************************/
N#ifndef __APP_TP_TRANSFER_H__
N#define __APP_TP_TRANSFER_H__
N
N#include "string.h"
N#include "tau_device_datatype.h"
N#include "tau_common.h"
N
N#define SCREEN_TRANSFER_WRITE false //<2F><><EFBFBD>յ<EFBFBD>screen io<69>жϣ<D0B6><CFA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><D6AE><EFBFBD><EFBFBD><EFBFBD>ö<EFBFBD><C3B6><EFBFBD>
N#define SCREEN_TRANSFER_READ true //<2F><><EFBFBD>յ<EFBFBD>screen io<69>жϣ<D0B6><CFA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><D6AE>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N
N#define ST_TP_SCAN_POINT_NUMBER_MAX 6
N
Ntypedef struct
N{
N uint8_t tp_point_buffer[ST_TP_SCAN_POINT_NUMBER_MAX]; // <20><><EFBFBD>յ<EFBFBD> TP <20><><EFBFBD><EFBFBD><E3A3AC><EFBFBD>ڼ<EFBFBD>¼<EFBFBD><C2BC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϣ
X uint8_t tp_point_buffer[6];
N uint8_t tp_read_point_counter; // ͳ<>Ʊ<EFBFBD><C6B1><EFBFBD><EFBFBD><EFBFBD>ֵ
N uint8_t tp_point_up_error_flag; // <20><><EFBFBD><EFBFBD><EFBFBD>ͷ<EFBFBD><CDB7><EFBFBD><ECB3A3>־
N uint32_t tp_point_error_time_counter; // <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>
N} st_tp_scan_data;
N
N
N/**************************************************************************
N* @name : ap_tp_calibration
N* @brief : <20><><EFBFBD><EFBFBD>У׼<D0A3><D7BC><EFBFBD><EFBFBD>
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nvoid ap_tp_calibration(void);
N
N/**************************************************************************
N* @name : app_tp_screen_init
N* @brief : screen IO <20><><EFBFBD><EFBFBD><E4A3AC>ʼ<EFBFBD><CABC>ʼ<EFBFBD><CABC>
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nvoid app_tp_screen_init(void);
N
N/**************************************************************************
N* @name : app_tp_init
N* @brief : <20><>ʼ<EFBFBD><CABC>ͨ<EFBFBD><CDA8><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nvoid app_tp_init(void);
N
N/**************************************************************************
N* @name : app_tp_transfer_screen_int
N* @brief : <20><><EFBFBD><EFBFBD>screen<65>жϺ󣬰<CFBA><F3A3ACB0><EFBFBD>flow<6F><77>дscreen<65><6E><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Э<EFBFBD><D0AD>ת<EFBFBD><D7AA>
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nvoid app_tp_transfer_screen_int(void);
N
N/**************************************************************************
N* @name : app_tp_transfer_screen_start
N* @brief : <20><><EFBFBD><EFBFBD>flow<6F><77>дscreen<65><6E><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC>
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nvoid app_tp_transfer_screen_start(void);
N
N/**************************************************************************
N* @name : app_tp_phone_reset_on
N* @brief : <20><>ȡ<EFBFBD>ֻ<EFBFBD><D6BB><EFBFBD>λ<EFBFBD>źŵ<C5BA>״̬
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nbool app_tp_phone_reset_on(void);
X_Bool app_tp_phone_reset_on(void);
N
N/**************************************************************************
N* @name : app_tp_phone_clear_reset_on
N* @brief : <20><><EFBFBD><EFBFBD><EFBFBD>ֻ<EFBFBD><D6BB><EFBFBD>λ<EFBFBD>źŵ<C5BA>״̬
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nvoid app_tp_phone_clear_reset_on(void);
N
N/**************************************************************************
N* @name : app_tp_s_write
N* @brief : <20><><EFBFBD><EFBFBD>ͨ<EFBFBD>ŷ<EFBFBD>ʽ<EFBFBD><CABD><EFBFBD>÷<EFBFBD><C3B7><EFBFBD>txbuffer<65>е<EFBFBD><D0B5><EFBFBD><EFBFBD><EFBFBD>
N* @param[in] :txbuffer: <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> buffer ͷ<><CDB7>ַ
N* @param[in] :buffer_size: <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> buffer <20><><EFBFBD><EFBFBD>
N* @return :
N* @retval :
N**************************************************************************/
Nvoid app_tp_s_write(const uint8_t *txbuffer, size_t buffer_size);
N
N/**************************************************************************
N* @name : app_tp_enter_sleep_on
N* @brief : <20><>ȡ tp ͨ<><CDA8>״̬
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nbool app_tp_enter_sleep_on(void);
X_Bool app_tp_enter_sleep_on(void);
N
N#endif
N
L 18 "..\src\app\demo\app_tp_for_custom_s8.h" 2
N#include "hal_gpio.h"
L 1 "..\src\sdk\include\hal_gpio.h" 1
N/*******************************************************************************
N*
N*
N* File: hal_gpio.h
N* Description<6F><6E> gpio HAL<41><4C>ͷ<EFBFBD>ļ<EFBFBD>
N* Version<6F><6E> V0.1
N* Date<74><65> 2021-03-17
N* Author<6F><72> wuc
N *******************************************************************************/
N#ifndef __HAL_GPIO_H__
N#define __HAL_GPIO_H__
N
N/*******************************************************************************
N* 1.Included files
N*******************************************************************************/
N#include "tau_device_datatype.h"
N#include "tau_common.h"
N
N/*******************************************************************************
N* 2.Global constant and macro definitions using #define
N*******************************************************************************/
N/**
N* @brief GPIO pin
N*/
Ntypedef enum
N{
N /*<2A><>GPIO<49><4F><EFBFBD><EFBFBD>PIN*/
N IO_PAD_GPIO0 = 0,
N IO_PAD_GPIO1,
N IO_PAD_GPIO2,
N IO_PAD_GPIO3,
N IO_PAD_GPIO4,
N IO_PAD_GPIO5,
N IO_PAD_GPIO6,
N IO_PAD_RESV,
N IO_PAD_GPIO8,
N IO_PAD_GPIO9,
N IO_PAD_GPIO10,
N IO_PAD_GPIO11,
N IO_PAD_GPIO12,
N IO_PAD_GPIO13,
N IO_PAD_GPIO14,
N IO_PAD_RESV1,
N IO_PAD_RESV2,
N IO_PAD_GPIO17,
N IO_PAD_GPIO18,
N IO_PAD_GPIO19,
N IO_PAD_GPIO20,
N IO_PAD_GPIO21,
N
N /*<2A><>ʵ<EFBFBD><CAB5>PAD NAME<4D><45><EFBFBD><EFBFBD>PIN*/
N IO_PAD_AP_SPIS_MISO = IO_PAD_GPIO0,
N IO_PAD_AP_SPIS_MOSI = IO_PAD_GPIO1,
N IO_PAD_AP_INT = IO_PAD_GPIO2,
N IO_PAD_AP_TE = IO_PAD_GPIO3,
N IO_PAD_AP_SWIRE = IO_PAD_GPIO4,
N IO_PAD_TD_SPIM_MISO = IO_PAD_GPIO5,
N IO_PAD_TD_SPIM_MOSI = IO_PAD_GPIO6,
N IO_PAD_TD_RSTN = IO_PAD_RESV,
N IO_PAD_TD_TPRSTN = IO_PAD_GPIO8,
N IO_PAD_TD_INT = IO_PAD_GPIO9,
N IO_PAD_TD_LEDPWM = IO_PAD_GPIO10,
N IO_PAD_TD_FC_CLK = IO_PAD_GPIO11,
N IO_PAD_TD_FC_CSN = IO_PAD_GPIO12,
N IO_PAD_TD_FC_MISO = IO_PAD_GPIO13,
N IO_PAD_TD_FC_MOSI = IO_PAD_GPIO14,
N IO_PAD_UART_RX = IO_PAD_GPIO17,
N IO_PAD_UART_TX = IO_PAD_GPIO18,
N IO_PAD_PWMEN = IO_PAD_GPIO19,
N IO_PAD_ADCIN = IO_PAD_GPIO20,
N IO_PAD_AP_TPRSTN = IO_PAD_GPIO21,
N
N IO_PAD_AP_SPIS_CLK,
N IO_PAD_AP_SPIS_CSN,
N IO_PAD_TD_SPIM_CLK,
N IO_PAD_TD_SPIM_CSN,
N IO_PAD_SFC_CLK,
N IO_PAD_SFC_CSN,
N IO_PAD_SFC_IO0,
N IO_PAD_SFC_IO1,
N
N IO_PAD_MAX,
N
N /*<2A><>ʵ<EFBFBD><CAB5>BALL<4C><4C><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>PIN*/
N IO_PIN_A1 = IO_PAD_TD_TPRSTN,
N IO_PIN_A2 = IO_PAD_TD_FC_CSN,
N IO_PIN_A3 = IO_PAD_TD_SPIM_MISO,
N IO_PIN_A4 = IO_PAD_TD_SPIM_CLK,
N IO_PIN_A5 = IO_PAD_PWMEN,
N IO_PIN_A6 = IO_PAD_ADCIN,
N IO_PIN_A7 = IO_PAD_AP_INT,
N IO_PIN_A8 = IO_PAD_AP_SPIS_MOSI,
N IO_PIN_B1 = IO_PAD_TD_FC_CLK,
N IO_PIN_B2 = IO_PAD_TD_FC_MISO,
N IO_PIN_B3 = IO_PAD_TD_SPIM_MOSI,
N IO_PIN_B4 = IO_PAD_TD_SPIM_CSN,
N IO_PIN_B5 = IO_PAD_AP_SWIRE,
N IO_PIN_B7 = IO_PAD_AP_SPIS_MISO,
N IO_PIN_B8 = IO_PAD_AP_SPIS_CSN,
N IO_PIN_C1 = IO_PAD_TD_FC_MOSI,
N IO_PIN_C2 = IO_PAD_TD_LEDPWM,
N IO_PIN_C4 = IO_PAD_UART_TX,
N IO_PIN_C5 = IO_PAD_UART_RX,
N IO_PIN_C6 = IO_PAD_AP_TE,
N IO_PIN_D1 = IO_PAD_TD_RSTN,
N IO_PIN_D2 = IO_PAD_TD_INT,
N IO_PIN_D7 = IO_PAD_AP_TPRSTN,
N IO_PIN_D8 = IO_PAD_AP_SPIS_CLK,
N} io_pad_e;
N
N/**
N* @brief PAD_AP_SPIS_CLK<4C><4B>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_JTAG_TCK = 0,
N IO_MODE_SPIS_SCLK = 1,
N IO_MODE_I2C0_SCL = 3,
N} pad_ap_spis_clk_mode_e;
N
N/**
N* @brief PAD_AP_SPIS_CSN<53><4E>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_JTAG_TRSTN = 0,
N IO_MODE_SPIS_CSN = 1,
N IO_MODE_I2C0_SDA = 3,
N} pad_ap_spis_csn_mode_e;
N
N/**
N* @brief PAD_AP_SPIS_MISO<53><4F>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_JTAG_TDO = 0,
N IO_MODE_SPIS_MISO = 1,
N IO_MODE_GPIO0 = 2,
N IO_MODE_UART_RX_AP = 3,
N IO_MODE_SPIM_MISO_AP = 4,
N} pad_ap_spis_miso_mode_e;
N
N/**
N* @brief PAD_AP_SPIS_MOSI<53><49>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_JTAG_TMS = 0,
N IO_MODE_SPIS_MOSI = 1,
N IO_MODE_GPIO1 = 2,
N IO_MODE_UART_TX_AP = 3,
N IO_MODE_SPIM_MOSI_AP = 4,
N} pad_ap_spis_mosi_mode_e;
N
N/**
N* @brief PAD_AP_TPRSTN<54><4E>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_JTAG_TDI = 0,
N IO_MODE_GPIO21 = 2,
N} pad_ap_tprstn_mode_e;
N
N/**
N* @brief PAD_AP_INT<4E><54>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_GPIO2 = 2,
N} pad_ap_int_mode_e;
N
N/**
N* @brief PAD_AP_TE<54><45>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_TEAR = 0,
N IO_MODE_GPIO3 = 2,
N} pad_ap_te_mode_e;
N
N/**
N* @brief PAD_AP_SWIRE<52><45>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_SWIRE = 0,
N IO_MODE_PWMO = 1,
N IO_MODE_GPIO4 = 2,
N} pad_ap_swire_mode_e;
N
N/**
N* @brief PAD_TD_SPIM_CLK<4C><4B>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_SPIM_SCLK = 0,
N IO_MODE_I2C1_SCL = 1,
N} pad_td_spim_clk_mode_e;
N
N/**
N* @brief PAD_TD_SPIM_CSN<53><4E>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_SPIM_CSN = 0,
N IO_MODE_I2C1_SDA = 1,
N} pad_td_spim_csn_mode_e;
N
N/**
N* @brief PAD_TD_SPIM_MISO<53><4F>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_SPIM_MISO = 0,
N#if defined(ISP_568) || defined(ISP_368)
X#if 1L || 0L
N IO_MODE_PWMO1 = 1,
N#endif
N IO_MODE_GPIO5 = 2,
N} pad_td_spim_miso_mode_e;
N
N/**
N* @brief PAD_TD_SPIM_MOSI<53><49>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_SPIM_MOSI = 0,
N IO_MODE_GPIO6 = 2,
N} pad_td_spim_mosi_mode_e;
N
N/**
N* @brief PAD_TD_TPRSTN<54><4E>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_GPIO8 = 2,
N} pad_td_tprstn_mode_e;
N
N/**
N* @brief PAD_TD_INT<4E><54>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_GPIO9_FUNC = 0,
N IO_MODE_GPIO9 = 2,
N} pad_td_int_mode_e;
N
N/**
N* @brief PAD_TD_LEDPWM<57><4D>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_PWMI = 0,
N#if defined(ISP_568) || defined(ISP_368)
X#if 1L || 0L
N IO_MODE_PWMO2 = 1,
N#endif
N IO_MODE_GPIO10 = 2,
N} pad_td_ledpwm_mode_e;
N
N/**
N* @brief PAD_TD_FC_CLK<4C><4B>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_TSPIS_CLK = 0,
N IO_MODE_GPIO11 = 2,
N} pad_td_fc_clk_mode_e;
N
N/**
N* @brief PAD_TD_FC_CSN<53><4E>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_TSPIS_CSN = 0,
N IO_MODE_GPIO12 = 2,
N} pad_td_fc_csn_mode_e;
N
N/**
N* @brief PAD_TD_FC_MISO<53><4F>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_TSPIS_MISO = 0,
N IO_MODE_GPIO13 = 2,
N} pad_td_fc_miso_mode_e;
N
N/**
N* @brief PAD_TD_FC_MOSI<53><49>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_TSPIS_MOSI = 0,
N IO_MODE_GPIO14 = 2,
N} pad_td_fc_mosi_mode_e;
N
N/**
N* @brief PAD_UART_RX<52><58>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_UART_RX = 0,
N IO_MODE_GPIO17 = 2,
N} pad_uart_rx_mode_e;
N
N/**
N* @brief PAD_UART_TX<54><58>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_UART_TX = 0,
N IO_MODE_GPIO18 = 2,
N} pad_uart_tx_mode_e;
N
N/**
N* @brief PAD_PWMEN<45><4E>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_GPIO19 = 2,
N} pad_pwmen_mode_e;
N
N/**
N* @brief PAD_ADCIN<49><4E>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_GPIO20 = 2,
N} pad_adcin_mode_e;
N
N/**
N* @brief PAD_SFC_CLK<4C><4B>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_INTER_FLS_CLK = 0,
N IO_MODE_EXT_FLS_CLK = 1,
N} pad_sfc_clk_mode_e;
N
N/**
N* @brief PAD_SFC_CSN<53><4E>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_INTER_FLS_CSN = 0,
N IO_MODE_EXT_FLS_CSN = 1,
N} pad_sfc_csn_mode_e;
N
N/**
N* @brief PAD_SFC_IO0<4F><30>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_INTER_FLS_IO0 = 0,
N IO_MODE_EXT_FLS_MISO = 1,
N} pad_sfc_io0_mode_e;
N
N/**
N* @brief PAD_SFC_IO1<4F><31>ѡ<EFBFBD><D1A1>mode
N*/
Ntypedef enum
N{
N IO_MODE_INTER_FLS_IO1 = 0,
N IO_MODE_EXT_FLS_MOSI = 1,
N} pad_sfc_io1_mode_e;
N
N/**
N* @brief PAD<41><44>ѹת<D1B9><D7AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N*/
Ntypedef enum
N{
N IO_SLEW_RATE_SLOW = 0,
N IO_SLEW_RATE_FAST = 1,
N} pad_slew_rate_e;
N
N/*******************************************************************************
N* IOE
N*******************************************************************************/
N/**
N* @brief GPIO io<69><6F><EFBFBD><EFBFBD>
N*/
Ntypedef enum
N{
N IO_IOE_INPUT = 0,
N IO_IOE_OUTPUT
N} gpio_ioe_direct_e;
N
N/**
N* @brief GPIO level
N*/
Ntypedef enum
N{
N IO_LVL_LOW = 0,
N IO_LVL_HIGH
N} gpio_level_e;
N
N/*******************************************************************************
N* 3.Global structures, unions and enumerations using typedef
N*******************************************************************************/
N
N/*******************************************************************************
N* 4.Global variable extern declarations
N*******************************************************************************/
N
N/*******************************************************************************
N* 5.Global function prototypes
N*******************************************************************************/
N/**
N* @brief <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>PADΪGPIO mode<64><65><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊinput<75><74>ָ<EFBFBD><D6B8><EFBFBD>жϴ<D0B6><CFB4><EFBFBD><EFBFBD><EFBFBD>ʽ
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param trig<69><67>4<EFBFBD><34><EFBFBD>жϴ<D0B6><CFB4><EFBFBD><EFBFBD><EFBFBD>ʽ<EFBFBD><CABD><EFBFBD>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>sys_cfg_trigger_e
N* @retval <20><>
N*/
Nvoid hal_gpio_init_eint(io_pad_e pad, sys_cfg_trigger_e trig);
N
N/**
N* @brief ע<><D7A2>GPIO<49>жϻص<CFBB><D8B5><EFBFBD><EFBFBD><EFBFBD>
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param cb_func<6E><63><EFBFBD>ص<EFBFBD><D8B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ַ
N* @param data<74><61><EFBFBD>ص<EFBFBD><D8B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ַ
N* @retval <20><>
N*/
Nvoid hal_gpio_reg_eint_cb(io_pad_e pad, fcb_type cb_func);
N
N/**
N* @brief <20><><EFBFBD><EFBFBD>GPIO<49>ж<EFBFBD>
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param state<74><65><EFBFBD><EFBFBD><EFBFBD>ؿ<EFBFBD><D8BF><EFBFBD>
N* @retval <20><>
N*/
Nvoid hal_gpio_ctrl_eint(io_pad_e pad, function_state_e state);
N
N/**
N* @brief <20><>ȡGPIO<49>ж<EFBFBD><D0B6><EFBFBD><EFBFBD><EFBFBD>
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @retval <20><>
N*/
Ngpio_int_e hal_gpio_get_int_type(io_pad_e pad);
N
N/**
N* @brief <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>PADΪGPIO mode<64><65><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊoutput<75><74>ָ<EFBFBD><D6B8><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC>ƽ
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param lvl<76><6C><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC>ƽ<EFBFBD><C6BD><EFBFBD>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_level_e
N* @retval <20><>
N*/
Nvoid hal_gpio_init_output(io_pad_e pad, gpio_level_e lvl);
N
N/**
N* @brief <20><>װ<EFBFBD><D7B0><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ӿ<EFBFBD>
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param lvl<76><6C><EFBFBD><EFBFBD>ʼ<EFBFBD><CABC>ƽ<EFBFBD><C6BD><EFBFBD>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_level_e
N* @retval <20><>
N*/
Nvoid hal_gpio_set_output_data(io_pad_e pad, gpio_level_e lvl);
N
N/**
N* @brief <20><>װ<EFBFBD><D7B0><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ӿ<EFBFBD><D3BF><EFBFBD>չ<EFBFBD><D5B9>֧<EFBFBD><D6A7>ͬʱ֪ͨ<CDA8><D6AA><EFBFBD><EFBFBD>IO<49><4F><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƽ
N* @param pad1<64><31>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param pad1_lvl<76><6C><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD>ƽ<EFBFBD><C6BD><EFBFBD>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_level_e
N* @param pad2<64><32>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param pad2_lvl<76><6C><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD>ƽ<EFBFBD><C6BD><EFBFBD>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_level_e
N* @retval <20><>
N*/
Nvoid hal_gpio_set_output_data_ex(io_pad_e pad1, gpio_level_e pad1_lvl, io_pad_e pad2, gpio_level_e pad2_lvl);
N
N/**
N* @brief <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>PADΪGPIO mode<64><65><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ϊinput
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @retval <20><>
N*/
Nvoid hal_gpio_init_input(io_pad_e pad);
N
N/**
N* @brief <20><>ȡ<EFBFBD><C8A1><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ƽ
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @retval <20><>
N*/
Ngpio_level_e hal_gpio_get_input_data(io_pad_e pad);
N
N/**
N* @brief <20><><EFBFBD><EFBFBD>io mode
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param mode<64><65><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ģʽ<C4A3><CABD><EFBFBD>ο<EFBFBD><CEBF><EFBFBD>PAD<41><44>Ӧ<EFBFBD><D3A6>modeö<65><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N* @retval <20><>
N*/
Nvoid hal_gpio_set_mode(io_pad_e pad, uint8_t mode);
N
N/**
N* @brief <20><>ȡָ<C8A1><D6B8>PAD<41><44>Ĭ<EFBFBD><C4AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>״̬
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param up_enable<6C><65>Ĭ<EFBFBD><C4AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>״̬
N* @param down_enable<6C><65>Ĭ<EFBFBD><C4AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>״̬
N* @retval <20><>
N*/
Nvoid hal_gpio_get_pull_state(io_pad_e pad, function_state_e *up_enable, function_state_e *down_enable);
N
N/**
N* @brief <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>PAD<41><44>Ĭ<EFBFBD><C4AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>״̬
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param up_enable<6C><65>Ĭ<EFBFBD><C4AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>״̬
N* @param down_enable<6C><65>Ĭ<EFBFBD><C4AC><EFBFBD><EFBFBD><EFBFBD><EFBFBD>״̬
N* @retval <20><>
N*/
Nvoid hal_gpio_set_pull_state(io_pad_e pad, function_state_e up_enable, function_state_e down_enable);
N
N/**
N* @brief <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>PAD<41>Ƿ<EFBFBD>Ϊʩ<CEAA><CAA9><EFBFBD>ش<EFBFBD><D8B4><EFBFBD>
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param st_enable<6C><65>1Ϊʩ<CEAA><CAA9><EFBFBD>ش<EFBFBD><D8B4><EFBFBD><EFBFBD><EFBFBD><30><CEAA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N* @retval <20><>
N*/
Nvoid hal_gpio_set_schmitt_trigger(io_pad_e pad, function_state_e st_enable);
N
N/**
N* @brief <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>PAD<41><44><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param strength<74><68><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǿ<EFBFBD>ȣ<EFBFBD>ȡֵΪ0~3
N* @retval <20><>
N*/
Nvoid hal_gpio_set_driving_strength(io_pad_e pad, uint8_t strength);
N
N/**
N* @brief <20><><EFBFBD><EFBFBD>ָ<EFBFBD><D6B8>PAD<41>ĵ<EFBFBD>ѹת<D1B9><D7AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N* @param pad<61><64>GPIO<49><4F><EFBFBD>ţ<EFBFBD><C5A3>ο<EFBFBD>ö<EFBFBD><C3B6><EFBFBD><EFBFBD><EFBFBD><EFBFBD>gpio_pad_e
N* @param rate<74><65><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ǿ<EFBFBD>ȣ<EFBFBD>ȡֵΪ0~3
N* @retval <20><>
N*/
Nvoid hal_gpio_set_slew_rate(io_pad_e pad, pad_slew_rate_e rate);
N
N/**
N* @brief <20><><EFBFBD><EFBFBD>AP_RSTN<54><4E><EFBFBD><EFBFBD><EFBFBD>ж<EFBFBD>
N* @param enable: <20>жϿ<D0B6><CFBF><EFBFBD>
N* @param cb_func<6E><63><EFBFBD>ص<EFBFBD><D8B5><EFBFBD><EFBFBD><EFBFBD>
N* @param trig<69><67><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ģʽ
N* @retval <20><>
N*/
Nvoid hal_gpio_set_ap_reset_int(bool enable, fcb_type cb_func, sys_cfg_trigger_e trig);
Xvoid hal_gpio_set_ap_reset_int(_Bool enable, fcb_type cb_func, sys_cfg_trigger_e trig);
N
N#endif /* __HAL_GPIO_H__ */
L 19 "..\src\app\demo\app_tp_for_custom_s8.h" 2
N
N#define AP_TP_TRANSFER 1
N
N#if AMOLED_NT37280
S #define PHONE_SLAVE_TRANSFER_I2C 1 //1:<3A><>ʾ<EFBFBD>ֻ<EFBFBD><D6BB><EFBFBD>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> I2C ͨ<>ţ<EFBFBD>
S #define PHONE_SLAVE_TRANSFER_SPI 0 //1:<3A><>ʾ<EFBFBD>ֻ<EFBFBD><D6BB><EFBFBD>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> SPI ͨ<>ţ<EFBFBD>
S #define SCREEN_MASTER_TRANSFER_I2C 0 //1:<3A><>ʾ<EFBFBD><CABE>Ļ<EFBFBD><C4BB>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> I2C ͨ<>ţ<EFBFBD>
S #define SCREEN_MASTER_TRANSFER_SPI 1 //1:<3A><>ʾ<EFBFBD><CABE>Ļ<EFBFBD><C4BB>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> SPI ͨ<>ţ<EFBFBD>
S#elif LCD_HX83112A
S #define PHONE_SLAVE_TRANSFER_I2C 1 //1:<3A><>ʾ<EFBFBD>ֻ<EFBFBD><D6BB><EFBFBD>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> I2C ͨ<>ţ<EFBFBD>
S #define PHONE_SLAVE_TRANSFER_SPI 0 //1:<3A><>ʾ<EFBFBD>ֻ<EFBFBD><D6BB><EFBFBD>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> SPI ͨ<>ţ<EFBFBD>
S #define SCREEN_MASTER_TRANSFER_I2C 0 //1:<3A><>ʾ<EFBFBD><CABE>Ļ<EFBFBD><C4BB>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> I2C ͨ<>ţ<EFBFBD>
S #define SCREEN_MASTER_TRANSFER_SPI 0 //1:<3A><>ʾ<EFBFBD><CABE>Ļ<EFBFBD><C4BB>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> SPI ͨ<>ţ<EFBFBD>
N#else // #if LCD_TD4310
N #define PHONE_SLAVE_TRANSFER_I2C 1 //1:<3A><>ʾ<EFBFBD>ֻ<EFBFBD><D6BB><EFBFBD>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> I2C ͨ<>ţ<EFBFBD>
N #define PHONE_SLAVE_TRANSFER_SPI 0 //1:<3A><>ʾ<EFBFBD>ֻ<EFBFBD><D6BB><EFBFBD>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> SPI ͨ<>ţ<EFBFBD>
N #define SCREEN_MASTER_TRANSFER_I2C 1 //1:<3A><>ʾ<EFBFBD><CABE>Ļ<EFBFBD><C4BB>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> I2C ͨ<>ţ<EFBFBD>
N #define SCREEN_MASTER_TRANSFER_SPI 0 //1:<3A><>ʾ<EFBFBD><CABE>Ļ<EFBFBD><C4BB>оƬ֮<C6AC>䣬touch <20><><EFBFBD>ݲ<EFBFBD><DDB2><EFBFBD> SPI ͨ<>ţ<EFBFBD>
N#endif
N
N#ifdef USE_FOR_SUMSUNG_S21
N#define CHIP_I2C_ADDRESS 0x48 //оƬ<D0BE><C6AC><EFBFBD><EFBFBD> I2C <20>ӻ<EFBFBD><D3BB><EFBFBD>ַ.<2E><><EFBFBD><EFBFBD>I2C<32><43>ַ
N#define SCREEN_I2C_ADDRESS 0x49 //<2F><>Ļ I2C <20>ӻ<EFBFBD><D3BB><EFBFBD>ַ
N
N#elif defined(USE_FOR_SUMSUNG_S9PLUS)
X#elif 0L
S#define CHIP_I2C_ADDRESS 0x48 //оƬ<D0BE><C6AC><EFBFBD><EFBFBD> I2C <20>ӻ<EFBFBD><D3BB><EFBFBD>ַ
S#define SCREEN_I2C_ADDRESS 0x20 //<2F><>Ļ I2C <20>ӻ<EFBFBD><D3BB><EFBFBD>ַ
S
S#else
S#define CHIP_I2C_ADDRESS 0x48 //оƬ<D0BE><C6AC><EFBFBD><EFBFBD> I2C <20>ӻ<EFBFBD><D3BB><EFBFBD>ַ
S#define SCREEN_I2C_ADDRESS 0x49 //<2F><>Ļ I2C <20>ӻ<EFBFBD><D3BB><EFBFBD>ַ
N#endif
N
N#define CHIP_I2C_ADDR_BITS I2C_ADDR_BITS_7 //<2F><>Ļ I2C <20><>ַλ<D6B7><CEBB> 7/10<31><30>Ĭ<EFBFBD><C4AC>Ϊ7
N#define SCREEN_I2C_ADDR_BITS I2C_ADDR_BITS_7 //<2F><>Ļ I2C <20><>ַλ<D6B7><CEBB> 7/10<31><30>Ĭ<EFBFBD><C4AC>Ϊ7
N#define I2C_MASTER_SPEED 400000 //<2F><><EFBFBD><EFBFBD> I2C <20><><EFBFBD><EFBFBD>ͨ<EFBFBD><CDA8><EFBFBD><EFBFBD><EFBFBD><EFBFBD> 800000
N
N#define SPI_MASTER_SPEED 10000000 //<2F><><EFBFBD><EFBFBD> SPI <20><><EFBFBD><EFBFBD>ͨ<EFBFBD><CDA8><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N
N#define BUFFER_SIZE_MAX 200 //<2F><><EFBFBD><EFBFBD> bufrer <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֽ<EFBFBD><D6BD><EFBFBD>
N
N#define INPUT_WIDTH_VALUE 1440 //ԭװ<D4AD><D7B0> X <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
N#define INPUT_HEIGHT_VALUE 3200 //ԭװ<D4AD><D7B0> Y <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
N
N#if LCD_FT8006S_TRULY59
S#define OUTPUT_WIDTH_VALUE 720 //ά<><CEAC><EFBFBD><EFBFBD> X <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
S#define OUTPUT_HEIGHT_VALUE 1520 //ά<><CEAC><EFBFBD><EFBFBD> Y <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
S
N#else
N#define OUTPUT_WIDTH_VALUE 1080 //ά<><CEAC><EFBFBD><EFBFBD> X <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
N#define OUTPUT_HEIGHT_VALUE 2400 //ά<><CEAC><EFBFBD><EFBFBD> Y <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ<EFBFBD><D6B5><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ
N#endif
N
N
N#define SCREEN_TRANSFER_WRITE false //<2F><><EFBFBD>յ<EFBFBD>screen io<69>жϣ<D0B6><CFA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><D6AE><EFBFBD><EFBFBD><EFBFBD>ö<EFBFBD><C3B6><EFBFBD>
N#define SCREEN_TRANSFER_READ true //<2F><><EFBFBD>յ<EFBFBD>screen io<69>жϣ<D0B6><CFA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><D6AE>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
N
Ntypedef enum
N{
N I2C_ADDR_BITS_7 = 7,
N I2C_ADDR_BITS_10 = 10
N} en_I2C_ADDR_BITS_mdoe;
N
Ntypedef struct
N{
N uint8_t *buffer; //<2F><><EFBFBD>յ<EFBFBD>screen io<69>жϺ<D0B6><CFBA><EFBFBD>ͨ<EFBFBD>ŵķ<C5B5><C4B7><EFBFBD>bufferָ<72><D6B8>
N size_t txbuffer_size; //<2F><><EFBFBD><EFBFBD> buffer <20><><EFBFBD>ݳ<EFBFBD><DDB3>ȣ<EFBFBD><C8A3><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>Ŀǰֻ֧<D6BB><D6A7>4<EFBFBD><34><EFBFBD>ֽ<EFBFBD>
N size_t rxbuffer_size; //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><D6AE><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD>ص<EFBFBD><D8B5><EFBFBD><EFBFBD>ݳ<EFBFBD><DDB3><EFBFBD>
N bool read_flag; //true <20><><EFBFBD>յ<EFBFBD>screen io<69>жϣ<D0B6><CFA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><D6AE>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
X _Bool read_flag;
N} st_screen_data;
N
Ntypedef struct
N{
N const uint8_t *buffer; //ͨ<>ŵķ<C5B5><C4B7><EFBFBD>bufferָ<72><D6B8>
N size_t txbuffer_size; //<2F><><EFBFBD><EFBFBD> buffer <20><><EFBFBD>ݳ<EFBFBD><DDB3>ȣ<EFBFBD><C8A3><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD>ʱ<EFBFBD><CAB1>Ŀǰֻ֧<D6BB><D6A7>4<EFBFBD><34><EFBFBD>ֽ<EFBFBD>
N size_t rxbuffer_size; //<2F><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><D6AE><EFBFBD><EFBFBD>Ҫ<EFBFBD><D2AA><EFBFBD>ص<EFBFBD><D8B5><EFBFBD><EFBFBD>ݳ<EFBFBD><DDB3><EFBFBD>
N bool read_flag; //true <20><><EFBFBD>յ<EFBFBD>screen io<69>жϣ<D0B6><CFA3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>֮<EFBFBD><D6AE>Ҫ<EFBFBD><D2AA><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
X _Bool read_flag;
N} st_screen_const_data;
N
Ntypedef struct
N{
N uint8_t reg_size; //<2F><><EFBFBD><EFBFBD>buffer<65>ĸ<EFBFBD><C4B8><EFBFBD>
N size_t write_back_size; //Ҫ<><D2AA><EFBFBD>͵<EFBFBD><CDB5><EFBFBD><EFBFBD>ݳ<EFBFBD><DDB3><EFBFBD>
N const uint8_t *reg_data; //<2F><><EFBFBD><EFBFBD>buffer
N const uint8_t *write_back; //<2F><><EFBFBD><EFBFBD>bufer
N} st_reg_const_data;
N
Ntypedef struct
N{
N uint8_t reg_size; //<2F><><EFBFBD><EFBFBD>buffer<65>ĸ<EFBFBD><C4B8><EFBFBD>
N size_t write_back_size; //Ҫ<><D2AA><EFBFBD>͵<EFBFBD><CDB5><EFBFBD><EFBFBD>ݳ<EFBFBD><DDB3><EFBFBD>
N uint8_t *reg_data; //<2F><><EFBFBD><EFBFBD>buffer
N uint8_t *write_back; //<2F><><EFBFBD><EFBFBD>bufer
N} st_reg_data;
N
Nextern io_pad_e g_screen_input_rst_pad;
Nextern io_pad_e g_screen_input_int_pad;
Nextern io_pad_e g_phone_input_rst_pad;
Nextern io_pad_e g_phone_output_int_pad;
N
Nextern uint8_t phone_start_flag;
Nextern uint8_t phone_touch_flag;
Nextern const uint8_t screen_reg_int_data_size;
Nextern const uint8_t screen_reg_start_data_size;
Nextern st_screen_data screen_reg_int_data[];
Nextern st_screen_const_data screen_reg_start_data[];
N//extern st_reg_const_data phone_reg_const_data[];
N
N/**************************************************************************
N* @name : app_tp_screen_analysis_const
N* @brief : screen start <20>׶<EFBFBD><D7B6><EFBFBD><EFBFBD>ݽ<EFBFBD><DDBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɿͻ<C9BF><CDBB><EFBFBD><EFBFBD><EFBFBD>
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nuint8_t app_tp_screen_analysis_const(uint8_t transfer_now, uint8_t *rxbuffer, size_t data_size);
N
N/**************************************************************************
N* @name : app_tp_screen_analysis_int
N* @brief : screen <20><>IO<49>жϺ<D0B6><CFBA><EFBFBD> <20><><EFBFBD>ݽ<EFBFBD><DDBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɿͻ<C9BF><CDBB><EFBFBD><EFBFBD><EFBFBD>
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nuint8_t app_tp_screen_analysis_int(uint8_t transfer_now, uint8_t *rxbuffer, size_t data_size);
N
N/**************************************************************************
N* @name : app_tp_phone_analysis_data
N* @brief : phone <20><><EFBFBD>ݽ<EFBFBD><DDBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɿͻ<C9BF><CDBB><EFBFBD><EFBFBD><EFBFBD>
N* @param[in] :
N* @return :
N* @retval :
N**************************************************************************/
Nvoid app_tp_phone_analysis_data(uint8_t *rxbuffer, size_t rxbuffer_size, const uint8_t **txbuffer, size_t *txbuffer_size);
N
N
N#endif
N
L 76 "..\src\app\test_cfg_global.h" 2
N#endif
N
N#if _DEMO_S8P_EN
X#if 0
S #include "s8p_demo.h"
S #include "app_tp_for_custom_s8p.h"
N#endif
N
N#endif
N
L 5 "..\src\app\main.c" 2
N#include "tau_log.h"
L 1 "..\src\common\tau_log.h" 1
N/*******************************************************************************
N*
N*
N* File: tau_log.h
N* Description log file
N* Version V0.1
N* Date 2020-12-08
N* Author linyw
N*******************************************************************************/
N#ifndef _TAU_LOG_H_
N#define _TAU_LOG_H_
N
N
N/*******************************************************************************
N* 1.Included files
N*******************************************************************************/
N#include <stdint.h>
N#include <string.h>
N#include <stdarg.h>
L 1 "C:\Keil_v5\ARM\ARMCC\Bin\..\include\stdarg.h" 1
N/* stdarg.h: ANSI 'C' (X3J11 Oct 88) library header, section 4.8 */
N/* Copyright (C) Codemist Ltd., 1988 */
N/* Copyright (C) ARM Ltd., 1991-1999. All rights reserved */
N
N/*
N * RCS $Revision$
N * Checkin $Date$
N * Revising $Author: agrant $
N */
N
N#ifndef __stdarg_h
N#define __stdarg_h
N#define __ARMCLIB_VERSION 5060037
N
N #ifndef __STDARG_DECLS
N #define __STDARG_DECLS
N
N #undef __CLIBNS
N
N #ifdef __cplusplus
S namespace std {
S #define __CLIBNS ::std::
S extern "C" {
N #else
N #define __CLIBNS
N #endif /* __cplusplus */
N
N/*
N * stdarg.h declares a type and defines macros for advancing through a
N * list of arguments whose number and types are not known to the called
N * function when it is translated. A function may be called with a variable
N * number of arguments of differing types. Its parameter list contains one or
N * more parameters. The rightmost parameter plays a special role in the access
N * mechanism, and will be called parmN in this description.
N */
N
N/* N.B. <stdio.h> is required to declare vfprintf() without defining */
N/* va_list. Clearly the type __va_list there must keep in step. */
N#ifdef __clang__
S typedef __builtin_va_list va_list;
S #define va_start(ap, param) __builtin_va_start(ap, param)
S #define va_end(ap) __builtin_va_end(ap)
S #define va_arg(ap, type) __builtin_va_arg(ap, type)
S #if __STDC_VERSION__ >= 199900L || __cplusplus >= 201103L || !defined(__STRICT_ANSI__)
S #define va_copy(dest, src) __builtin_va_copy(dest, src)
S #endif
N#else
N #ifdef __TARGET_ARCH_AARCH64
S typedef struct __va_list {
S void *__stack;
S void *__gr_top;
S void *__vr_top;
S int __gr_offs;
S int __vr_offs;
S } va_list;
N #else
N typedef struct __va_list { void *__ap; } va_list;
N #endif
N /*
N * an array type suitable for holding information needed by the macro va_arg
N * and the function va_end. The called function shall declare a variable
N * (referred to as ap) having type va_list. The variable ap may be passed as
N * an argument to another function.
N * Note: va_list is an array type so that when an object of that type
N * is passed as an argument it gets passed by reference.
N */
N #define va_start(ap, parmN) __va_start(ap, parmN)
N
N /*
N * The va_start macro shall be executed before any access to the unnamed
N * arguments. The parameter ap points to an object that has type va_list.
N * The va_start macro initialises ap for subsequent use by va_arg and
N * va_end. The parameter parmN is the identifier of the rightmost parameter
N * in the variable parameter list in the function definition (the one just
N * before the '...'). If the parameter parmN is declared with the register
N * storage class an error is given.
N * If parmN is a narrow type (char, short, float) an error is given in
N * strict ANSI mode, or a warning otherwise.
N * Returns: no value.
N */
N #define va_arg(ap, type) __va_arg(ap, type)
N
N /*
N * The va_arg macro expands to an expression that has the type and value of
N * the next argument in the call. The parameter ap shall be the same as the
N * va_list ap initialised by va_start. Each invocation of va_arg modifies
N * ap so that successive arguments are returned in turn. The parameter
N * 'type' is a type name such that the type of a pointer to an object that
N * has the specified type can be obtained simply by postfixing a * to
N * 'type'. If type is a narrow type, an error is given in strict ANSI
N * mode, or a warning otherwise. If the type is an array or function type,
N * an error is given.
N * In non-strict ANSI mode, 'type' is allowed to be any expression.
N * Returns: The first invocation of the va_arg macro after that of the
N * va_start macro returns the value of the argument after that
N * specified by parmN. Successive invocations return the values of
N * the remaining arguments in succession.
N * The result is cast to 'type', even if 'type' is narrow.
N */
N
N#define __va_copy(dest, src) ((void)((dest) = (src)))
N
N#if !defined(__STRICT_ANSI__) || (defined(__STDC_VERSION__) && 199901L <= __STDC_VERSION__) || (defined(__cplusplus) && 201103L <= __cplusplus)
X#if !0L || (1L && 199901L <= 199901L) || (0L && 201103L <= __cplusplus)
N /* va_copy is in C99 and non-strict C90 and non-strict C++
N * __va_copy is always present.
N */
N #define va_copy(dest, src) ((void)((dest) = (src)))
N
N /* The va_copy macro makes the va_list dest be a copy of
N * the va_list src, as if the va_start macro had been applied
N * to it followed by the same sequence of uses of the va_arg
N * macro as had previously been used to reach the present state
N * of src.
N */
N#endif
N
N#define va_end(ap) __va_end(ap)
N /*
N * The va_end macro facilitates a normal return from the function whose
N * variable argument list was referenced by the expansion of va_start that
N * initialised the va_list ap. If the va_end macro is not invoked before
N * the return, the behaviour is undefined.
N * Returns: no value.
N */
N#endif /* __clang__ */
N
N #ifdef __cplusplus
S } /* extern "C" */
S } /* namespace std */
N #endif /* __cplusplus */
N
N #ifdef __GNUC__
N /* be cooperative with glibc */
N typedef __CLIBNS va_list __gnuc_va_list;
X typedef va_list __gnuc_va_list;
N #define __GNUC_VA_LIST
N #undef __need___va_list
N #endif
N
N #endif /* __STDARG_DECLS */
N
N #ifdef __cplusplus
S #ifndef __STDARG_NO_EXPORTS
S using ::std::va_list;
S #endif
N #endif /* __cplusplus */
N#endif
N
N/* end of stdarg.h */
N
L 20 "..\src\common\tau_log.h" 2
N#include "ArmCM0.h"
L 1 "..\src\sdk\include\M0\ArmCM0.h" 1
N/**************************************************************************//**
N * @file ARMCM0.h
N * @brief CMSIS Core Peripheral Access Layer Header File for
N * ARMCM0 Device
N * @version V5.3.1
N * @date 09. July 2018
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#ifndef ARMCM0_H
N#define ARMCM0_H
N
N#ifdef __cplusplus
Sextern "C" {
N#endif
N
N
N/* ------------------------- Interrupt Number Definition ------------------------ */
N
Ntypedef enum IRQn
N{
N /* ------------------- Processor Exceptions Numbers ----------------------------- */
N NonMaskableInt_IRQn = -14, /* 2 Non Maskable Interrupt */
N HardFault_IRQn = -13, /* 3 HardFault Interrupt */
N SVCall_IRQn = -5, /* 11 SV Call Interrupt */
N PendSV_IRQn = -2, /* 14 Pend SV Interrupt */
N SysTick_IRQn = -1, /* 15 System Tick Interrupt */
N
N /* ------------------- Processor Interrupt Numbers ------------------------------ */
N VIDC_IRQn = 0,
N LCDC_IRQn = 1,
N MIPI_RX_IRQn = 2,
N MIPI_TX_IRQn = 3,
N MEMC_IRQn = 4,
N VPRE_IRQn = 5,
N FLSCTRL_IRQn = 6,
N DMA_IRQn = 7,
N TIMER0_IRQn = 8,
N TIMER1_IRQn = 9,
N TIMER2_IRQn = 10,
N TIMER3_IRQn = 11,
N WDG_IRQn = 12,
N UART_IRQn = 13,
N I2C0_IRQn = 14,
N I2C1_IRQn = 15,
N SPIS_IRQn = 16,
N SPIM_IRQn = 17,
N ADC_IRQn = 18,
N PWMDET_IRQn = 19,
N OTP_IRQn = 20,
N SWIRE_IRQn = 21,
N PVD_IRQn = 22,
N AP_NRESET_IRQn = 23,
N EXTI_INT0_IRQn = 24,
N EXTI_INT1_IRQn = 25,
N EXTI_INT2_IRQn = 26,
N EXTI_INT3_IRQn = 27,
N EXTI_INT4_IRQn = 28,
N EXTI_INT5_IRQn = 29,
N EXTI_INT6_IRQn = 30,
N EXTI_INT7_IRQn = 31
N /* Interrupts 10 .. 31 are left out */
N} IRQn_Type;
N
N
N
N
N/* ================================================================================ */
N/* ================ Processor and Core Peripheral Section ================ */
N/* ================================================================================ */
N
N/* ------- Start of section using anonymous unions and disabling warnings ------- */
N#if defined (__CC_ARM)
X#if 1L
N#pragma push
N#pragma anon_unions
N#elif defined (__ICCARM__)
X#elif 0L
S#pragma language=extended
S#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
S#pragma clang diagnostic push
S#pragma clang diagnostic ignored "-Wc11-extensions"
S#pragma clang diagnostic ignored "-Wreserved-id-macro"
S#elif defined (__GNUC__)
S/* anonymous unions are enabled by default */
S#elif defined (__TMS470__)
S/* anonymous unions are enabled by default */
S#elif defined (__TASKING__)
S#pragma warning 586
S#elif defined (__CSMC__)
S/* anonymous unions are enabled by default */
S#else
S#warning Not supported compiler type
N#endif
N
N/* -------- Configuration of Core Peripherals ----------------------------------- */
N#define __CM0_REV 0x0000U /* Core revision r0p0 */
N#define __MPU_PRESENT 0U /* no MPU present */
N#define __VTOR_PRESENT 0U /* no VTOR present */
N#define __NVIC_PRIO_BITS 2U /* Number of Bits used for Priority Levels */ //20220228
N#define __Vendor_SysTickConfig 0U /* Set to 1 if different SysTick Config is used */
N
N#define __FPU_PRESENT 0U /* Set to 1 if FPU is present */
N#define __FPU_DP 0U /* single precision FPU */
N#define __ICACHE_PRESENT 0U /* Set to 1 if I-CACHE is present */
N#define __DCACHE_PRESENT 0U /* Set to 1 if D-CACHE is present */
N#define __DSP_PRESENT 0U /* no DSP extension present */
N
N#define FPGA_MODE 0
N#define EDA_MODE 0
N#define EXTERN_24M 0
N#define CPU_CLK_100M 0
N
N#include "core_cm0.h" /* Processor and core peripherals */
L 1 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\core_cm0.h" 1
N/**************************************************************************//**
N * @file core_cm0.h
N * @brief CMSIS Cortex-M0 Core Peripheral Access Layer Header File
N * @version V5.0.6
N * @date 13. March 2019
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2019 Arm Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#if defined ( __ICCARM__ )
X#if 0L
S #pragma system_include /* treat file as system include file for MISRA check */
S#elif defined (__clang__)
X#elif 0L
S #pragma clang system_header /* treat file as system include file */
N#endif
N
N#ifndef __CORE_CM0_H_GENERIC
N#define __CORE_CM0_H_GENERIC
N
N#include <stdint.h>
N
N#ifdef __cplusplus
S extern "C" {
N#endif
N
N/**
N \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
N CMSIS violates the following MISRA-C:2004 rules:
N
N \li Required Rule 8.5, object/function definition in header file.<br>
N Function definitions in header files are used to allow 'inlining'.
N
N \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
N Unions are used for effective representation of core registers.
N
N \li Advisory Rule 19.7, Function-like macro defined.<br>
N Function-like macros are used to allow more efficient code.
N */
N
N
N/*******************************************************************************
N * CMSIS definitions
N ******************************************************************************/
N/**
N \ingroup Cortex_M0
N @{
N */
N
N#include "cmsis_version.h"
L 1 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\cmsis_version.h" 1
N/**************************************************************************//**
N * @file cmsis_version.h
N * @brief CMSIS Core(M) Version definitions
N * @version V5.0.2
N * @date 19. April 2017
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2017 ARM Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#if defined ( __ICCARM__ )
X#if 0L
S #pragma system_include /* treat file as system include file for MISRA check */
S#elif defined (__clang__)
X#elif 0L
S #pragma clang system_header /* treat file as system include file */
N#endif
N
N#ifndef __CMSIS_VERSION_H
N#define __CMSIS_VERSION_H
N
N/* CMSIS Version definitions */
N#define __CM_CMSIS_VERSION_MAIN ( 5U) /*!< [31:16] CMSIS Core(M) main version */
N#define __CM_CMSIS_VERSION_SUB ( 1U) /*!< [15:0] CMSIS Core(M) sub version */
N#define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | \
N __CM_CMSIS_VERSION_SUB ) /*!< CMSIS Core(M) version number */
X#define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | __CM_CMSIS_VERSION_SUB )
N#endif
L 64 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\core_cm0.h" 2
N
N/* CMSIS CM0 definitions */
N#define __CM0_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */
N#define __CM0_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */
N#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16U) | \
N __CM0_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */
X#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16U) | __CM0_CMSIS_VERSION_SUB )
N
N#define __CORTEX_M (0U) /*!< Cortex-M Core */
N
N/** __FPU_USED indicates whether an FPU is used or not.
N This core does not support an FPU at all
N*/
N#define __FPU_USED 0U
N
N#if defined ( __CC_ARM )
X#if 1L
N #if defined __TARGET_FPU_VFP
X #if 0L
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
N #endif
N
N#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
X#elif 1L && (5060750 >= 6010050)
S #if defined __ARM_FP
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
S#elif defined ( __GNUC__ )
S #if defined (__VFP_FP__) && !defined(__SOFTFP__)
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
S#elif defined ( __ICCARM__ )
S #if defined __ARMVFP__
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
S#elif defined ( __TI_ARM__ )
S #if defined __TI_VFP_SUPPORT__
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
S#elif defined ( __TASKING__ )
S #if defined __FPU_VFP__
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
S#elif defined ( __CSMC__ )
S #if ( __CSMC__ & 0x400U)
S #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
S #endif
S
N#endif
N
N#include "cmsis_compiler.h" /* CMSIS compiler specific defines */
L 1 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\cmsis_compiler.h" 1
N/**************************************************************************//**
N * @file cmsis_compiler.h
N * @brief CMSIS compiler generic header file
N * @version V5.1.0
N * @date 09. October 2018
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#ifndef __CMSIS_COMPILER_H
N#define __CMSIS_COMPILER_H
N
N#include <stdint.h>
N
N/*
N * Arm Compiler 4/5
N */
N#if defined ( __CC_ARM )
X#if 1L
N #include "cmsis_armcc.h"
L 1 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\cmsis_armcc.h" 1
N/**************************************************************************//**
N * @file cmsis_armcc.h
N * @brief CMSIS compiler ARMCC (Arm Compiler 5) header file
N * @version V5.0.5
N * @date 14. December 2018
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#ifndef __CMSIS_ARMCC_H
N#define __CMSIS_ARMCC_H
N
N
N#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677)
X#if 1L && (5060750 < 400677)
S #error "Please use Arm Compiler Toolchain V4.0.677 or later!"
N#endif
N
N/* CMSIS compiler control architecture macros */
N#if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \
N (defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) )
X#if ((0L && (__TARGET_ARCH_6_M == 1)) || (1L && (1 == 1)) )
N #define __ARM_ARCH_6M__ 1
N#endif
N
N#if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1))
X#if (0L && (__TARGET_ARCH_7_M == 1))
S #define __ARM_ARCH_7M__ 1
N#endif
N
N#if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1))
X#if (0L && (__TARGET_ARCH_7E_M == 1))
S #define __ARM_ARCH_7EM__ 1
N#endif
N
N /* __ARM_ARCH_8M_BASE__ not applicable */
N /* __ARM_ARCH_8M_MAIN__ not applicable */
N
N/* CMSIS compiler control DSP macros */
N#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
X#if ((0L && (__ARM_ARCH_7EM__ == 1)) )
S #define __ARM_FEATURE_DSP 1
N#endif
N
N/* CMSIS compiler specific defines */
N#ifndef __ASM
N #define __ASM __asm
N#endif
N#ifndef __INLINE
N #define __INLINE __inline
N#endif
N#ifndef __STATIC_INLINE
N #define __STATIC_INLINE static __inline
N#endif
N#ifndef __STATIC_FORCEINLINE
N #define __STATIC_FORCEINLINE static __forceinline
N#endif
N#ifndef __NO_RETURN
N #define __NO_RETURN __declspec(noreturn)
N#endif
N#ifndef __USED
N #define __USED __attribute__((used))
N#endif
N#ifndef __WEAK
N #define __WEAK __attribute__((weak))
N#endif
N#ifndef __PACKED
N #define __PACKED __attribute__((packed))
N#endif
N#ifndef __PACKED_STRUCT
N #define __PACKED_STRUCT __packed struct
N#endif
N#ifndef __PACKED_UNION
N #define __PACKED_UNION __packed union
N#endif
N#ifndef __UNALIGNED_UINT32 /* deprecated */
N #define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x)))
N#endif
N#ifndef __UNALIGNED_UINT16_WRITE
N #define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val))
N#endif
N#ifndef __UNALIGNED_UINT16_READ
N #define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr)))
N#endif
N#ifndef __UNALIGNED_UINT32_WRITE
N #define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val))
N#endif
N#ifndef __UNALIGNED_UINT32_READ
N #define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr)))
N#endif
N#ifndef __ALIGNED
N #define __ALIGNED(x) __attribute__((aligned(x)))
N#endif
N#ifndef __RESTRICT
N #define __RESTRICT __restrict
N#endif
N
N/* ########################### Core Function Access ########################### */
N/** \ingroup CMSIS_Core_FunctionInterface
N \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
N @{
N */
N
N/**
N \brief Enable IRQ Interrupts
N \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
N Can only be executed in Privileged modes.
N */
N/* intrinsic void __enable_irq(); */
N
N
N/**
N \brief Disable IRQ Interrupts
N \details Disables IRQ interrupts by setting the I-bit in the CPSR.
N Can only be executed in Privileged modes.
N */
N/* intrinsic void __disable_irq(); */
N
N/**
N \brief Get Control Register
N \details Returns the content of the Control Register.
N \return Control Register value
N */
N__STATIC_INLINE uint32_t __get_CONTROL(void)
Xstatic __inline uint32_t __get_CONTROL(void)
N{
N register uint32_t __regControl __ASM("control");
X register uint32_t __regControl __asm("control");
N return(__regControl);
N}
N
N
N/**
N \brief Set Control Register
N \details Writes the given value to the Control Register.
N \param [in] control Control Register value to set
N */
N__STATIC_INLINE void __set_CONTROL(uint32_t control)
Xstatic __inline void __set_CONTROL(uint32_t control)
N{
N register uint32_t __regControl __ASM("control");
X register uint32_t __regControl __asm("control");
N __regControl = control;
N}
N
N
N/**
N \brief Get IPSR Register
N \details Returns the content of the IPSR Register.
N \return IPSR Register value
N */
N__STATIC_INLINE uint32_t __get_IPSR(void)
Xstatic __inline uint32_t __get_IPSR(void)
N{
N register uint32_t __regIPSR __ASM("ipsr");
X register uint32_t __regIPSR __asm("ipsr");
N return(__regIPSR);
N}
N
N
N/**
N \brief Get APSR Register
N \details Returns the content of the APSR Register.
N \return APSR Register value
N */
N__STATIC_INLINE uint32_t __get_APSR(void)
Xstatic __inline uint32_t __get_APSR(void)
N{
N register uint32_t __regAPSR __ASM("apsr");
X register uint32_t __regAPSR __asm("apsr");
N return(__regAPSR);
N}
N
N
N/**
N \brief Get xPSR Register
N \details Returns the content of the xPSR Register.
N \return xPSR Register value
N */
N__STATIC_INLINE uint32_t __get_xPSR(void)
Xstatic __inline uint32_t __get_xPSR(void)
N{
N register uint32_t __regXPSR __ASM("xpsr");
X register uint32_t __regXPSR __asm("xpsr");
N return(__regXPSR);
N}
N
N
N/**
N \brief Get Process Stack Pointer
N \details Returns the current value of the Process Stack Pointer (PSP).
N \return PSP Register value
N */
N__STATIC_INLINE uint32_t __get_PSP(void)
Xstatic __inline uint32_t __get_PSP(void)
N{
N register uint32_t __regProcessStackPointer __ASM("psp");
X register uint32_t __regProcessStackPointer __asm("psp");
N return(__regProcessStackPointer);
N}
N
N
N/**
N \brief Set Process Stack Pointer
N \details Assigns the given value to the Process Stack Pointer (PSP).
N \param [in] topOfProcStack Process Stack Pointer value to set
N */
N__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
Xstatic __inline void __set_PSP(uint32_t topOfProcStack)
N{
N register uint32_t __regProcessStackPointer __ASM("psp");
X register uint32_t __regProcessStackPointer __asm("psp");
N __regProcessStackPointer = topOfProcStack;
N}
N
N
N/**
N \brief Get Main Stack Pointer
N \details Returns the current value of the Main Stack Pointer (MSP).
N \return MSP Register value
N */
N__STATIC_INLINE uint32_t __get_MSP(void)
Xstatic __inline uint32_t __get_MSP(void)
N{
N register uint32_t __regMainStackPointer __ASM("msp");
X register uint32_t __regMainStackPointer __asm("msp");
N return(__regMainStackPointer);
N}
N
N
N/**
N \brief Set Main Stack Pointer
N \details Assigns the given value to the Main Stack Pointer (MSP).
N \param [in] topOfMainStack Main Stack Pointer value to set
N */
N__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
Xstatic __inline void __set_MSP(uint32_t topOfMainStack)
N{
N register uint32_t __regMainStackPointer __ASM("msp");
X register uint32_t __regMainStackPointer __asm("msp");
N __regMainStackPointer = topOfMainStack;
N}
N
N
N/**
N \brief Get Priority Mask
N \details Returns the current state of the priority mask bit from the Priority Mask Register.
N \return Priority Mask value
N */
N__STATIC_INLINE uint32_t __get_PRIMASK(void)
Xstatic __inline uint32_t __get_PRIMASK(void)
N{
N register uint32_t __regPriMask __ASM("primask");
X register uint32_t __regPriMask __asm("primask");
N return(__regPriMask);
N}
N
N
N/**
N \brief Set Priority Mask
N \details Assigns the given value to the Priority Mask Register.
N \param [in] priMask Priority Mask
N */
N__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
Xstatic __inline void __set_PRIMASK(uint32_t priMask)
N{
N register uint32_t __regPriMask __ASM("primask");
X register uint32_t __regPriMask __asm("primask");
N __regPriMask = (priMask);
N}
N
N
N#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
X#if ((0L && (__ARM_ARCH_7M__ == 1)) || (0L && (__ARM_ARCH_7EM__ == 1)) )
S
S/**
S \brief Enable FIQ
S \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
S Can only be executed in Privileged modes.
S */
S#define __enable_fault_irq __enable_fiq
S
S
S/**
S \brief Disable FIQ
S \details Disables FIQ interrupts by setting the F-bit in the CPSR.
S Can only be executed in Privileged modes.
S */
S#define __disable_fault_irq __disable_fiq
S
S
S/**
S \brief Get Base Priority
S \details Returns the current value of the Base Priority register.
S \return Base Priority register value
S */
S__STATIC_INLINE uint32_t __get_BASEPRI(void)
S{
S register uint32_t __regBasePri __ASM("basepri");
S return(__regBasePri);
S}
S
S
S/**
S \brief Set Base Priority
S \details Assigns the given value to the Base Priority register.
S \param [in] basePri Base Priority value to set
S */
S__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
S{
S register uint32_t __regBasePri __ASM("basepri");
S __regBasePri = (basePri & 0xFFU);
S}
S
S
S/**
S \brief Set Base Priority with condition
S \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
S or the new value increases the BASEPRI priority level.
S \param [in] basePri Base Priority value to set
S */
S__STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri)
S{
S register uint32_t __regBasePriMax __ASM("basepri_max");
S __regBasePriMax = (basePri & 0xFFU);
S}
S
S
S/**
S \brief Get Fault Mask
S \details Returns the current value of the Fault Mask register.
S \return Fault Mask register value
S */
S__STATIC_INLINE uint32_t __get_FAULTMASK(void)
S{
S register uint32_t __regFaultMask __ASM("faultmask");
S return(__regFaultMask);
S}
S
S
S/**
S \brief Set Fault Mask
S \details Assigns the given value to the Fault Mask register.
S \param [in] faultMask Fault Mask value to set
S */
S__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
S{
S register uint32_t __regFaultMask __ASM("faultmask");
S __regFaultMask = (faultMask & (uint32_t)1U);
S}
S
N#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
X#endif
N
N
N/**
N \brief Get FPSCR
N \details Returns the current value of the Floating Point Status/Control register.
N \return Floating Point Status/Control register value
N */
N__STATIC_INLINE uint32_t __get_FPSCR(void)
Xstatic __inline uint32_t __get_FPSCR(void)
N{
N#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
N (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
X#if ((1L && (0U == 1U)) && (1L && (0U == 1U)) )
S register uint32_t __regfpscr __ASM("fpscr");
S return(__regfpscr);
N#else
N return(0U);
N#endif
N}
N
N
N/**
N \brief Set FPSCR
N \details Assigns the given value to the Floating Point Status/Control register.
N \param [in] fpscr Floating Point Status/Control value to set
N */
N__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
Xstatic __inline void __set_FPSCR(uint32_t fpscr)
N{
N#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
N (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
X#if ((1L && (0U == 1U)) && (1L && (0U == 1U)) )
S register uint32_t __regfpscr __ASM("fpscr");
S __regfpscr = (fpscr);
N#else
N (void)fpscr;
N#endif
N}
N
N
N/*@} end of CMSIS_Core_RegAccFunctions */
N
N
N/* ########################## Core Instruction Access ######################### */
N/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
N Access to dedicated instructions
N @{
N*/
N
N/**
N \brief No Operation
N \details No Operation does nothing. This instruction can be used for code alignment purposes.
N */
N#define __NOP __nop
N
N
N/**
N \brief Wait For Interrupt
N \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
N */
N#define __WFI __wfi
N
N
N/**
N \brief Wait For Event
N \details Wait For Event is a hint instruction that permits the processor to enter
N a low-power state until one of a number of events occurs.
N */
N#define __WFE __wfe
N
N
N/**
N \brief Send Event
N \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
N */
N#define __SEV __sev
N
N
N/**
N \brief Instruction Synchronization Barrier
N \details Instruction Synchronization Barrier flushes the pipeline in the processor,
N so that all instructions following the ISB are fetched from cache or memory,
N after the instruction has been completed.
N */
N#define __ISB() do {\
N __schedule_barrier();\
N __isb(0xF);\
N __schedule_barrier();\
N } while (0U)
X#define __ISB() do { __schedule_barrier(); __isb(0xF); __schedule_barrier(); } while (0U)
N
N/**
N \brief Data Synchronization Barrier
N \details Acts as a special kind of Data Memory Barrier.
N It completes when all explicit memory accesses before this instruction complete.
N */
N#define __DSB() do {\
N __schedule_barrier();\
N __dsb(0xF);\
N __schedule_barrier();\
N } while (0U)
X#define __DSB() do { __schedule_barrier(); __dsb(0xF); __schedule_barrier(); } while (0U)
N
N/**
N \brief Data Memory Barrier
N \details Ensures the apparent order of the explicit memory operations before
N and after the instruction, without ensuring their completion.
N */
N#define __DMB() do {\
N __schedule_barrier();\
N __dmb(0xF);\
N __schedule_barrier();\
N } while (0U)
X#define __DMB() do { __schedule_barrier(); __dmb(0xF); __schedule_barrier(); } while (0U)
N
N
N/**
N \brief Reverse byte order (32 bit)
N \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412.
N \param [in] value Value to reverse
N \return Reversed value
N */
N#define __REV __rev
N
N
N/**
N \brief Reverse byte order (16 bit)
N \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856.
N \param [in] value Value to reverse
N \return Reversed value
N */
N#ifndef __NO_EMBEDDED_ASM
N__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
X__attribute__((section(".rev16_text"))) static __inline __asm uint32_t __REV16(uint32_t value)
N{
N rev16 r0, r0
N bx lr
N}
N#endif
N
N
N/**
N \brief Reverse byte order (16 bit)
N \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000.
N \param [in] value Value to reverse
N \return Reversed value
N */
N#ifndef __NO_EMBEDDED_ASM
N__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value)
X__attribute__((section(".revsh_text"))) static __inline __asm int16_t __REVSH(int16_t value)
N{
N revsh r0, r0
N bx lr
N}
N#endif
N
N
N/**
N \brief Rotate Right in unsigned value (32 bit)
N \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
N \param [in] op1 Value to rotate
N \param [in] op2 Number of Bits to rotate
N \return Rotated value
N */
N#define __ROR __ror
N
N
N/**
N \brief Breakpoint
N \details Causes the processor to enter Debug state.
N Debug tools can use this to investigate system state when the instruction at a particular address is reached.
N \param [in] value is ignored by the processor.
N If required, a debugger can use it to store additional information about the breakpoint.
N */
N#define __BKPT(value) __breakpoint(value)
N
N
N/**
N \brief Reverse bit order of value
N \details Reverses the bit order of the given value.
N \param [in] value Value to reverse
N \return Reversed value
N */
N#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
X#if ((0L && (__ARM_ARCH_7M__ == 1)) || (0L && (__ARM_ARCH_7EM__ == 1)) )
S #define __RBIT __rbit
N#else
N__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
X__attribute__((always_inline)) static __inline uint32_t __RBIT(uint32_t value)
N{
N uint32_t result;
N uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */
N
N result = value; /* r will be reversed bits of v; first get LSB of v */
N for (value >>= 1U; value != 0U; value >>= 1U)
N {
N result <<= 1U;
N result |= value & 1U;
N s--;
N }
N result <<= s; /* shift when v's highest bits are zero */
N return result;
N}
N#endif
N
N
N/**
N \brief Count leading zeros
N \details Counts the number of leading zeros of a data value.
N \param [in] value Value to count the leading zeros
N \return number of leading zeros in value
N */
N#define __CLZ __clz
N
N
N#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
X#if ((0L && (__ARM_ARCH_7M__ == 1)) || (0L && (__ARM_ARCH_7EM__ == 1)) )
S
S/**
S \brief LDR Exclusive (8 bit)
S \details Executes a exclusive LDR instruction for 8 bit value.
S \param [in] ptr Pointer to data
S \return value of type uint8_t at (*ptr)
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
S#else
S #define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop")
S#endif
S
S
S/**
S \brief LDR Exclusive (16 bit)
S \details Executes a exclusive LDR instruction for 16 bit values.
S \param [in] ptr Pointer to data
S \return value of type uint16_t at (*ptr)
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
S#else
S #define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop")
S#endif
S
S
S/**
S \brief LDR Exclusive (32 bit)
S \details Executes a exclusive LDR instruction for 32 bit values.
S \param [in] ptr Pointer to data
S \return value of type uint32_t at (*ptr)
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
S#else
S #define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop")
S#endif
S
S
S/**
S \brief STR Exclusive (8 bit)
S \details Executes a exclusive STR instruction for 8 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S \return 0 Function succeeded
S \return 1 Function failed
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __STREXB(value, ptr) __strex(value, ptr)
S#else
S #define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
S#endif
S
S
S/**
S \brief STR Exclusive (16 bit)
S \details Executes a exclusive STR instruction for 16 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S \return 0 Function succeeded
S \return 1 Function failed
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __STREXH(value, ptr) __strex(value, ptr)
S#else
S #define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
S#endif
S
S
S/**
S \brief STR Exclusive (32 bit)
S \details Executes a exclusive STR instruction for 32 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S \return 0 Function succeeded
S \return 1 Function failed
S */
S#if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020)
S #define __STREXW(value, ptr) __strex(value, ptr)
S#else
S #define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop")
S#endif
S
S
S/**
S \brief Remove the exclusive lock
S \details Removes the exclusive lock which is created by LDREX.
S */
S#define __CLREX __clrex
S
S
S/**
S \brief Signed Saturate
S \details Saturates a signed value.
S \param [in] value Value to be saturated
S \param [in] sat Bit position to saturate to (1..32)
S \return Saturated value
S */
S#define __SSAT __ssat
S
S
S/**
S \brief Unsigned Saturate
S \details Saturates an unsigned value.
S \param [in] value Value to be saturated
S \param [in] sat Bit position to saturate to (0..31)
S \return Saturated value
S */
S#define __USAT __usat
S
S
S/**
S \brief Rotate Right with Extend (32 bit)
S \details Moves each bit of a bitstring right by one bit.
S The carry input is shifted in at the left end of the bitstring.
S \param [in] value Value to rotate
S \return Rotated value
S */
S#ifndef __NO_EMBEDDED_ASM
S__attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value)
S{
S rrx r0, r0
S bx lr
S}
S#endif
S
S
S/**
S \brief LDRT Unprivileged (8 bit)
S \details Executes a Unprivileged LDRT instruction for 8 bit value.
S \param [in] ptr Pointer to data
S \return value of type uint8_t at (*ptr)
S */
S#define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr))
S
S
S/**
S \brief LDRT Unprivileged (16 bit)
S \details Executes a Unprivileged LDRT instruction for 16 bit values.
S \param [in] ptr Pointer to data
S \return value of type uint16_t at (*ptr)
S */
S#define __LDRHT(ptr) ((uint16_t) __ldrt(ptr))
S
S
S/**
S \brief LDRT Unprivileged (32 bit)
S \details Executes a Unprivileged LDRT instruction for 32 bit values.
S \param [in] ptr Pointer to data
S \return value of type uint32_t at (*ptr)
S */
S#define __LDRT(ptr) ((uint32_t ) __ldrt(ptr))
S
S
S/**
S \brief STRT Unprivileged (8 bit)
S \details Executes a Unprivileged STRT instruction for 8 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S */
S#define __STRBT(value, ptr) __strt(value, ptr)
S
S
S/**
S \brief STRT Unprivileged (16 bit)
S \details Executes a Unprivileged STRT instruction for 16 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S */
S#define __STRHT(value, ptr) __strt(value, ptr)
S
S
S/**
S \brief STRT Unprivileged (32 bit)
S \details Executes a Unprivileged STRT instruction for 32 bit values.
S \param [in] value Value to store
S \param [in] ptr Pointer to location
S */
S#define __STRT(value, ptr) __strt(value, ptr)
S
N#else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
X#else
N
N/**
N \brief Signed Saturate
N \details Saturates a signed value.
N \param [in] value Value to be saturated
N \param [in] sat Bit position to saturate to (1..32)
N \return Saturated value
N */
N__attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat)
X__attribute__((always_inline)) static __inline int32_t __SSAT(int32_t val, uint32_t sat)
N{
N if ((sat >= 1U) && (sat <= 32U))
N {
N const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U);
N const int32_t min = -1 - max ;
N if (val > max)
N {
N return max;
N }
N else if (val < min)
N {
N return min;
N }
N }
N return val;
N}
N
N/**
N \brief Unsigned Saturate
N \details Saturates an unsigned value.
N \param [in] value Value to be saturated
N \param [in] sat Bit position to saturate to (0..31)
N \return Saturated value
N */
N__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat)
X__attribute__((always_inline)) static __inline uint32_t __USAT(int32_t val, uint32_t sat)
N{
N if (sat <= 31U)
N {
N const uint32_t max = ((1U << sat) - 1U);
N if (val > (int32_t)max)
N {
N return max;
N }
N else if (val < 0)
N {
N return 0U;
N }
N }
N return (uint32_t)val;
N}
N
N#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
N (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
X#endif
N
N/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
N
N
N/* ################### Compiler specific Intrinsics ########################### */
N/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
N Access to dedicated SIMD instructions
N @{
N*/
N
N#if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) )
X#if ((0L && (__ARM_ARCH_7EM__ == 1)) )
S
S#define __SADD8 __sadd8
S#define __QADD8 __qadd8
S#define __SHADD8 __shadd8
S#define __UADD8 __uadd8
S#define __UQADD8 __uqadd8
S#define __UHADD8 __uhadd8
S#define __SSUB8 __ssub8
S#define __QSUB8 __qsub8
S#define __SHSUB8 __shsub8
S#define __USUB8 __usub8
S#define __UQSUB8 __uqsub8
S#define __UHSUB8 __uhsub8
S#define __SADD16 __sadd16
S#define __QADD16 __qadd16
S#define __SHADD16 __shadd16
S#define __UADD16 __uadd16
S#define __UQADD16 __uqadd16
S#define __UHADD16 __uhadd16
S#define __SSUB16 __ssub16
S#define __QSUB16 __qsub16
S#define __SHSUB16 __shsub16
S#define __USUB16 __usub16
S#define __UQSUB16 __uqsub16
S#define __UHSUB16 __uhsub16
S#define __SASX __sasx
S#define __QASX __qasx
S#define __SHASX __shasx
S#define __UASX __uasx
S#define __UQASX __uqasx
S#define __UHASX __uhasx
S#define __SSAX __ssax
S#define __QSAX __qsax
S#define __SHSAX __shsax
S#define __USAX __usax
S#define __UQSAX __uqsax
S#define __UHSAX __uhsax
S#define __USAD8 __usad8
S#define __USADA8 __usada8
S#define __SSAT16 __ssat16
S#define __USAT16 __usat16
S#define __UXTB16 __uxtb16
S#define __UXTAB16 __uxtab16
S#define __SXTB16 __sxtb16
S#define __SXTAB16 __sxtab16
S#define __SMUAD __smuad
S#define __SMUADX __smuadx
S#define __SMLAD __smlad
S#define __SMLADX __smladx
S#define __SMLALD __smlald
S#define __SMLALDX __smlaldx
S#define __SMUSD __smusd
S#define __SMUSDX __smusdx
S#define __SMLSD __smlsd
S#define __SMLSDX __smlsdx
S#define __SMLSLD __smlsld
S#define __SMLSLDX __smlsldx
S#define __SEL __sel
S#define __QADD __qadd
S#define __QSUB __qsub
S
S#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
S ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
X#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
S
S#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
S ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
X#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
S
S#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
S ((int64_t)(ARG3) << 32U) ) >> 32U))
X#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + ((int64_t)(ARG3) << 32U) ) >> 32U))
S
N#endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */
N/*@} end of group CMSIS_SIMD_intrinsics */
N
N
N#endif /* __CMSIS_ARMCC_H */
L 35 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\cmsis_compiler.h" 2
N
N
N/*
N * Arm Compiler 6.6 LTM (armclang)
N */
N#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) && (__ARMCC_VERSION < 6100100)
X#elif 1L && (5060750 >= 6010050) && (5060750 < 6100100)
S #include "cmsis_armclang_ltm.h"
S
S /*
S * Arm Compiler above 6.10.1 (armclang)
S */
S#elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100)
S #include "cmsis_armclang.h"
S
S
S/*
S * GNU Compiler
S */
S#elif defined ( __GNUC__ )
S #include "cmsis_gcc.h"
S
S
S/*
S * IAR Compiler
S */
S#elif defined ( __ICCARM__ )
S #include <cmsis_iccarm.h>
S
S
S/*
S * TI Arm Compiler
S */
S#elif defined ( __TI_ARM__ )
S #include <cmsis_ccs.h>
S
S #ifndef __ASM
S #define __ASM __asm
S #endif
S #ifndef __INLINE
S #define __INLINE inline
S #endif
S #ifndef __STATIC_INLINE
S #define __STATIC_INLINE static inline
S #endif
S #ifndef __STATIC_FORCEINLINE
S #define __STATIC_FORCEINLINE __STATIC_INLINE
S #endif
S #ifndef __NO_RETURN
S #define __NO_RETURN __attribute__((noreturn))
S #endif
S #ifndef __USED
S #define __USED __attribute__((used))
S #endif
S #ifndef __WEAK
S #define __WEAK __attribute__((weak))
S #endif
S #ifndef __PACKED
S #define __PACKED __attribute__((packed))
S #endif
S #ifndef __PACKED_STRUCT
S #define __PACKED_STRUCT struct __attribute__((packed))
S #endif
S #ifndef __PACKED_UNION
S #define __PACKED_UNION union __attribute__((packed))
S #endif
S #ifndef __UNALIGNED_UINT32 /* deprecated */
S struct __attribute__((packed)) T_UINT32 { uint32_t v; };
S #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
S #endif
S #ifndef __UNALIGNED_UINT16_WRITE
S __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
S #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void*)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT16_READ
S __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
S #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __UNALIGNED_UINT32_WRITE
S __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
S #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT32_READ
S __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
S #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __ALIGNED
S #define __ALIGNED(x) __attribute__((aligned(x)))
S #endif
S #ifndef __RESTRICT
S #define __RESTRICT __restrict
S #endif
S
S
S/*
S * TASKING Compiler
S */
S#elif defined ( __TASKING__ )
S /*
S * The CMSIS functions have been implemented as intrinsics in the compiler.
S * Please use "carm -?i" to get an up to date list of all intrinsics,
S * Including the CMSIS ones.
S */
S
S #ifndef __ASM
S #define __ASM __asm
S #endif
S #ifndef __INLINE
S #define __INLINE inline
S #endif
S #ifndef __STATIC_INLINE
S #define __STATIC_INLINE static inline
S #endif
S #ifndef __STATIC_FORCEINLINE
S #define __STATIC_FORCEINLINE __STATIC_INLINE
S #endif
S #ifndef __NO_RETURN
S #define __NO_RETURN __attribute__((noreturn))
S #endif
S #ifndef __USED
S #define __USED __attribute__((used))
S #endif
S #ifndef __WEAK
S #define __WEAK __attribute__((weak))
S #endif
S #ifndef __PACKED
S #define __PACKED __packed__
S #endif
S #ifndef __PACKED_STRUCT
S #define __PACKED_STRUCT struct __packed__
S #endif
S #ifndef __PACKED_UNION
S #define __PACKED_UNION union __packed__
S #endif
S #ifndef __UNALIGNED_UINT32 /* deprecated */
S struct __packed__ T_UINT32 { uint32_t v; };
S #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
S #endif
S #ifndef __UNALIGNED_UINT16_WRITE
S __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
S #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT16_READ
S __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
S #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __UNALIGNED_UINT32_WRITE
S __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
S #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT32_READ
S __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
S #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __ALIGNED
S #define __ALIGNED(x) __align(x)
S #endif
S #ifndef __RESTRICT
S #warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
S #define __RESTRICT
S #endif
S
S
S/*
S * COSMIC Compiler
S */
S#elif defined ( __CSMC__ )
S #include <cmsis_csm.h>
S
S #ifndef __ASM
S #define __ASM _asm
S #endif
S #ifndef __INLINE
S #define __INLINE inline
S #endif
S #ifndef __STATIC_INLINE
S #define __STATIC_INLINE static inline
S #endif
S #ifndef __STATIC_FORCEINLINE
S #define __STATIC_FORCEINLINE __STATIC_INLINE
S #endif
S #ifndef __NO_RETURN
S // NO RETURN is automatically detected hence no warning here
S #define __NO_RETURN
S #endif
S #ifndef __USED
S #warning No compiler specific solution for __USED. __USED is ignored.
S #define __USED
S #endif
S #ifndef __WEAK
S #define __WEAK __weak
S #endif
S #ifndef __PACKED
S #define __PACKED @packed
S #endif
S #ifndef __PACKED_STRUCT
S #define __PACKED_STRUCT @packed struct
S #endif
S #ifndef __PACKED_UNION
S #define __PACKED_UNION @packed union
S #endif
S #ifndef __UNALIGNED_UINT32 /* deprecated */
S @packed struct T_UINT32 { uint32_t v; };
S #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
S #endif
S #ifndef __UNALIGNED_UINT16_WRITE
S __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; };
S #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT16_READ
S __PACKED_STRUCT T_UINT16_READ { uint16_t v; };
S #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __UNALIGNED_UINT32_WRITE
S __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; };
S #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val))
S #endif
S #ifndef __UNALIGNED_UINT32_READ
S __PACKED_STRUCT T_UINT32_READ { uint32_t v; };
S #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v)
S #endif
S #ifndef __ALIGNED
S #warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored.
S #define __ALIGNED(x)
S #endif
S #ifndef __RESTRICT
S #warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored.
S #define __RESTRICT
S #endif
S
S
S#else
S #error Unknown compiler.
N#endif
N
N
N#endif /* __CMSIS_COMPILER_H */
N
L 116 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\CMSIS\Core\Include\core_cm0.h" 2
N
N
N#ifdef __cplusplus
S}
N#endif
N
N#endif /* __CORE_CM0_H_GENERIC */
N
N#ifndef __CMSIS_GENERIC
N
N#ifndef __CORE_CM0_H_DEPENDANT
N#define __CORE_CM0_H_DEPENDANT
N
N#ifdef __cplusplus
S extern "C" {
N#endif
N
N/* check device defines and use defaults */
N#if defined __CHECK_DEVICE_DEFINES
X#if 0L
S #ifndef __CM0_REV
S #define __CM0_REV 0x0000U
S #warning "__CM0_REV not defined in device header file; using default!"
S #endif
S
S #ifndef __NVIC_PRIO_BITS
S #define __NVIC_PRIO_BITS 2U
S #warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
S #endif
S
S #ifndef __Vendor_SysTickConfig
S #define __Vendor_SysTickConfig 0U
S #warning "__Vendor_SysTickConfig not defined in device header file; using default!"
S #endif
N#endif
N
N/* IO definitions (access restrictions to peripheral registers) */
N/**
N \defgroup CMSIS_glob_defs CMSIS Global Defines
N
N <strong>IO Type Qualifiers</strong> are used
N \li to specify the access to peripheral variables.
N \li for automatic generation of peripheral register debug information.
N*/
N#ifdef __cplusplus
S #define __I volatile /*!< Defines 'read only' permissions */
N#else
N #define __I volatile const /*!< Defines 'read only' permissions */
N#endif
N#define __O volatile /*!< Defines 'write only' permissions */
N#define __IO volatile /*!< Defines 'read / write' permissions */
N
N/* following defines should be used for structure members */
N#define __IM volatile const /*! Defines 'read only' structure member permissions */
N#define __OM volatile /*! Defines 'write only' structure member permissions */
N#define __IOM volatile /*! Defines 'read / write' structure member permissions */
N
N/*@} end of group Cortex_M0 */
N
N
N
N/*******************************************************************************
N * Register Abstraction
N Core Register contain:
N - Core Register
N - Core NVIC Register
N - Core SCB Register
N - Core SysTick Register
N ******************************************************************************/
N/**
N \defgroup CMSIS_core_register Defines and Type Definitions
N \brief Type definitions and defines for Cortex-M processor based devices.
N*/
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_CORE Status and Control Registers
N \brief Core Register type definitions.
N @{
N */
N
N/**
N \brief Union type to access the Application Program Status Register (APSR).
N */
Ntypedef union
N{
N struct
N {
N uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */
N uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
N uint32_t C:1; /*!< bit: 29 Carry condition code flag */
N uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
N uint32_t N:1; /*!< bit: 31 Negative condition code flag */
N } b; /*!< Structure used for bit access */
N uint32_t w; /*!< Type used for word access */
N} APSR_Type;
N
N/* APSR Register Definitions */
N#define APSR_N_Pos 31U /*!< APSR: N Position */
N#define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */
N
N#define APSR_Z_Pos 30U /*!< APSR: Z Position */
N#define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */
N
N#define APSR_C_Pos 29U /*!< APSR: C Position */
N#define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */
N
N#define APSR_V_Pos 28U /*!< APSR: V Position */
N#define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */
N
N
N/**
N \brief Union type to access the Interrupt Program Status Register (IPSR).
N */
Ntypedef union
N{
N struct
N {
N uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
N uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
N } b; /*!< Structure used for bit access */
N uint32_t w; /*!< Type used for word access */
N} IPSR_Type;
N
N/* IPSR Register Definitions */
N#define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */
N#define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */
N
N
N/**
N \brief Union type to access the Special-Purpose Program Status Registers (xPSR).
N */
Ntypedef union
N{
N struct
N {
N uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
N uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
N uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
N uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */
N uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
N uint32_t C:1; /*!< bit: 29 Carry condition code flag */
N uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
N uint32_t N:1; /*!< bit: 31 Negative condition code flag */
N } b; /*!< Structure used for bit access */
N uint32_t w; /*!< Type used for word access */
N} xPSR_Type;
N
N/* xPSR Register Definitions */
N#define xPSR_N_Pos 31U /*!< xPSR: N Position */
N#define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */
N
N#define xPSR_Z_Pos 30U /*!< xPSR: Z Position */
N#define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */
N
N#define xPSR_C_Pos 29U /*!< xPSR: C Position */
N#define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */
N
N#define xPSR_V_Pos 28U /*!< xPSR: V Position */
N#define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */
N
N#define xPSR_T_Pos 24U /*!< xPSR: T Position */
N#define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */
N
N#define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */
N#define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */
N
N
N/**
N \brief Union type to access the Control Registers (CONTROL).
N */
Ntypedef union
N{
N struct
N {
N uint32_t _reserved0:1; /*!< bit: 0 Reserved */
N uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
N uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */
N } b; /*!< Structure used for bit access */
N uint32_t w; /*!< Type used for word access */
N} CONTROL_Type;
N
N/* CONTROL Register Definitions */
N#define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */
N#define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */
N
N/*@} end of group CMSIS_CORE */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
N \brief Type definitions for the NVIC Registers
N @{
N */
N
N/**
N \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
N */
Ntypedef struct
N{
N __IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
X volatile uint32_t ISER[1U];
N uint32_t RESERVED0[31U];
N __IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
X volatile uint32_t ICER[1U];
N uint32_t RESERVED1[31U];
N __IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
X volatile uint32_t ISPR[1U];
N uint32_t RESERVED2[31U];
N __IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
X volatile uint32_t ICPR[1U];
N uint32_t RESERVED3[31U];
N uint32_t RESERVED4[64U];
N __IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
X volatile uint32_t IP[8U];
N} NVIC_Type;
N
N/*@} end of group CMSIS_NVIC */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_SCB System Control Block (SCB)
N \brief Type definitions for the System Control Block Registers
N @{
N */
N
N/**
N \brief Structure type to access the System Control Block (SCB).
N */
Ntypedef struct
N{
N __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
X volatile const uint32_t CPUID;
N __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
X volatile uint32_t ICSR;
N uint32_t RESERVED0;
N __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
X volatile uint32_t AIRCR;
N __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
X volatile uint32_t SCR;
N __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
X volatile uint32_t CCR;
N uint32_t RESERVED1;
N __IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
X volatile uint32_t SHP[2U];
N __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
X volatile uint32_t SHCSR;
N} SCB_Type;
N
N/* SCB CPUID Register Definitions */
N#define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */
N#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
N
N#define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */
N#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
N
N#define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */
N#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
N
N#define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */
N#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
N
N#define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */
N#define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */
N
N/* SCB Interrupt Control State Register Definitions */
N#define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */
N#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
N
N#define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */
N#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
N
N#define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */
N#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
N
N#define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */
N#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
N
N#define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */
N#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
N
N#define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */
N#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
N
N#define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */
N#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
N
N#define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */
N#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
N
N#define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */
N#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */
N
N/* SCB Application Interrupt and Reset Control Register Definitions */
N#define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */
N#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
N
N#define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */
N#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
N
N#define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */
N#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
N
N#define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */
N#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
N
N#define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */
N#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
N
N/* SCB System Control Register Definitions */
N#define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */
N#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
N
N#define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */
N#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
N
N#define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */
N#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
N
N/* SCB Configuration Control Register Definitions */
N#define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */
N#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
N
N#define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */
N#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
N
N/* SCB System Handler Control and State Register Definitions */
N#define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */
N#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
N
N/*@} end of group CMSIS_SCB */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_SysTick System Tick Timer (SysTick)
N \brief Type definitions for the System Timer Registers.
N @{
N */
N
N/**
N \brief Structure type to access the System Timer (SysTick).
N */
Ntypedef struct
N{
N __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
X volatile uint32_t CTRL;
N __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
X volatile uint32_t LOAD;
N __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
X volatile uint32_t VAL;
N __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
X volatile const uint32_t CALIB;
N} SysTick_Type;
N
N/* SysTick Control / Status Register Definitions */
N#define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */
N#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
N
N#define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */
N#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
N
N#define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */
N#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
N
N#define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */
N#define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */
N
N/* SysTick Reload Register Definitions */
N#define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */
N#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */
N
N/* SysTick Current Register Definitions */
N#define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */
N#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */
N
N/* SysTick Calibration Register Definitions */
N#define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */
N#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
N
N#define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */
N#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
N
N#define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */
N#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */
N
N/*@} end of group CMSIS_SysTick */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
N \brief Cortex-M0 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor.
N Therefore they are not covered by the Cortex-M0 header file.
N @{
N */
N/*@} end of group CMSIS_CoreDebug */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_core_bitfield Core register bit field macros
N \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk).
N @{
N */
N
N/**
N \brief Mask and shift a bit field value for use in a register bit range.
N \param[in] field Name of the register bit field.
N \param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type.
N \return Masked and shifted value.
N*/
N#define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk)
N
N/**
N \brief Mask and shift a register value to extract a bit filed value.
N \param[in] field Name of the register bit field.
N \param[in] value Value of register. This parameter is interpreted as an uint32_t type.
N \return Masked and shifted bit field value.
N*/
N#define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos)
N
N/*@} end of group CMSIS_core_bitfield */
N
N
N/**
N \ingroup CMSIS_core_register
N \defgroup CMSIS_core_base Core Definitions
N \brief Definitions for base addresses, unions, and structures.
N @{
N */
N
N/* Memory mapping of Core Hardware */
N#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
N#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
N#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
N#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
N
N#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
N#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
N#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
N
N
N/*@} */
N
N
N
N/*******************************************************************************
N * Hardware Abstraction Layer
N Core Function Interface contains:
N - Core NVIC Functions
N - Core SysTick Functions
N - Core Register Access Functions
N ******************************************************************************/
N/**
N \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
N*/
N
N
N
N/* ########################## NVIC functions #################################### */
N/**
N \ingroup CMSIS_Core_FunctionInterface
N \defgroup CMSIS_Core_NVICFunctions NVIC Functions
N \brief Functions that manage interrupts and exceptions via the NVIC.
N @{
N */
N
N#ifdef CMSIS_NVIC_VIRTUAL
S #ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE
S #define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h"
S #endif
S #include CMSIS_NVIC_VIRTUAL_HEADER_FILE
N#else
N #define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping
N #define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping
N #define NVIC_EnableIRQ __NVIC_EnableIRQ
N #define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ
N #define NVIC_DisableIRQ __NVIC_DisableIRQ
N #define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ
N #define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ
N #define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ
N/*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M0 */
N #define NVIC_SetPriority __NVIC_SetPriority
N #define NVIC_GetPriority __NVIC_GetPriority
N #define NVIC_SystemReset __NVIC_SystemReset
N#endif /* CMSIS_NVIC_VIRTUAL */
N
N#ifdef CMSIS_VECTAB_VIRTUAL
S #ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE
S #define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h"
S #endif
S #include CMSIS_VECTAB_VIRTUAL_HEADER_FILE
N#else
N #define NVIC_SetVector __NVIC_SetVector
N #define NVIC_GetVector __NVIC_GetVector
N#endif /* (CMSIS_VECTAB_VIRTUAL) */
N
N#define NVIC_USER_IRQ_OFFSET 16
N
N
N/* The following EXC_RETURN values are saved the LR on exception entry */
N#define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */
N#define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */
N#define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */
N
N
N/* Interrupt Priorities are WORD accessible only under Armv6-M */
N/* The following MACROS handle generation of the register offset and byte masks */
N#define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)
N#define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )
N#define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )
N
N#define __NVIC_SetPriorityGrouping(X) (void)(X)
N#define __NVIC_GetPriorityGrouping() (0U)
N
N/**
N \brief Enable Interrupt
N \details Enables a device specific interrupt in the NVIC interrupt controller.
N \param [in] IRQn Device specific interrupt number.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
Xstatic __inline void __NVIC_EnableIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
X ((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
N }
N}
N
N
N/**
N \brief Get Interrupt Enable status
N \details Returns a device specific interrupt enable status from the NVIC interrupt controller.
N \param [in] IRQn Device specific interrupt number.
N \return 0 Interrupt is not enabled.
N \return 1 Interrupt is enabled.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
Xstatic __inline uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
X return((uint32_t)(((((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
N }
N else
N {
N return(0U);
N }
N}
N
N
N/**
N \brief Disable Interrupt
N \details Disables a device specific interrupt in the NVIC interrupt controller.
N \param [in] IRQn Device specific interrupt number.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn)
Xstatic __inline void __NVIC_DisableIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
X ((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
N __DSB();
X do { __schedule_barrier(); __dsb(0xF); __schedule_barrier(); } while (0U);
N __ISB();
X do { __schedule_barrier(); __isb(0xF); __schedule_barrier(); } while (0U);
N }
N}
N
N
N/**
N \brief Get Pending Interrupt
N \details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt.
N \param [in] IRQn Device specific interrupt number.
N \return 0 Interrupt status is not pending.
N \return 1 Interrupt status is pending.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
Xstatic __inline uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
X return((uint32_t)(((((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL));
N }
N else
N {
N return(0U);
N }
N}
N
N
N/**
N \brief Set Pending Interrupt
N \details Sets the pending bit of a device specific interrupt in the NVIC pending register.
N \param [in] IRQn Device specific interrupt number.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
Xstatic __inline void __NVIC_SetPendingIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
X ((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
N }
N}
N
N
N/**
N \brief Clear Pending Interrupt
N \details Clears the pending bit of a device specific interrupt in the NVIC pending register.
N \param [in] IRQn Device specific interrupt number.
N \note IRQn must not be negative.
N */
N__STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
Xstatic __inline void __NVIC_ClearPendingIRQ(IRQn_Type IRQn)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
X ((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
N }
N}
N
N
N/**
N \brief Set Interrupt Priority
N \details Sets the priority of a device specific interrupt or a processor exception.
N The interrupt number can be positive to specify a device specific interrupt,
N or negative to specify a processor exception.
N \param [in] IRQn Interrupt number.
N \param [in] priority Priority to set.
N \note The priority cannot be set for every processor exception.
N */
N__STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
Xstatic __inline void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
N{
N if ((int32_t)(IRQn) >= 0)
N {
N NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
X ((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->IP[( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )] = ((uint32_t)(((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->IP[( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )] & ~(0xFFUL << ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL))) |
N (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
X (((priority << (8U - 2U)) & (uint32_t)0xFFUL) << ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)));
N }
N else
N {
N SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) |
X ((SCB_Type *) ((0xE000E000UL) + 0x0D00UL) )->SHP[( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )] = ((uint32_t)(((SCB_Type *) ((0xE000E000UL) + 0x0D00UL) )->SHP[( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )] & ~(0xFFUL << ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL))) |
N (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn)));
X (((priority << (8U - 2U)) & (uint32_t)0xFFUL) << ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL)));
N }
N}
N
N
N/**
N \brief Get Interrupt Priority
N \details Reads the priority of a device specific interrupt or a processor exception.
N The interrupt number can be positive to specify a device specific interrupt,
N or negative to specify a processor exception.
N \param [in] IRQn Interrupt number.
N \return Interrupt Priority.
N Value is aligned automatically to the implemented priority bits of the microcontroller.
N */
N__STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
Xstatic __inline uint32_t __NVIC_GetPriority(IRQn_Type IRQn)
N{
N
N if ((int32_t)(IRQn) >= 0)
N {
N return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
X return((uint32_t)(((((NVIC_Type *) ((0xE000E000UL) + 0x0100UL) )->IP[ ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) )] >> ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL) ) & (uint32_t)0xFFUL) >> (8U - 2U)));
N }
N else
N {
N return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS)));
X return((uint32_t)(((((SCB_Type *) ((0xE000E000UL) + 0x0D00UL) )->SHP[( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) )] >> ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL) ) & (uint32_t)0xFFUL) >> (8U - 2U)));
N }
N}
N
N
N/**
N \brief Encode Priority
N \details Encodes the priority for an interrupt with the given priority group,
N preemptive priority value, and subpriority value.
N In case of a conflict between priority grouping and available
N priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set.
N \param [in] PriorityGroup Used priority group.
N \param [in] PreemptPriority Preemptive priority value (starting from 0).
N \param [in] SubPriority Subpriority value (starting from 0).
N \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority().
N */
N__STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
Xstatic __inline uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)
N{
N uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
N uint32_t PreemptPriorityBits;
N uint32_t SubPriorityBits;
N
N PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
X PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(2U)) ? (uint32_t)(2U) : (uint32_t)(7UL - PriorityGroupTmp);
N SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
X SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(2U)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(2U));
N
N return (
N ((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) |
N ((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL)))
N );
N}
N
N
N/**
N \brief Decode Priority
N \details Decodes an interrupt priority value with a given priority group to
N preemptive priority value and subpriority value.
N In case of a conflict between priority grouping and available
N priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set.
N \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority().
N \param [in] PriorityGroup Used priority group.
N \param [out] pPreemptPriority Preemptive priority value (starting from 0).
N \param [out] pSubPriority Subpriority value (starting from 0).
N */
N__STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
Xstatic __inline void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority)
N{
N uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */
N uint32_t PreemptPriorityBits;
N uint32_t SubPriorityBits;
N
N PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp);
X PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(2U)) ? (uint32_t)(2U) : (uint32_t)(7UL - PriorityGroupTmp);
N SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS));
X SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(2U)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(2U));
N
N *pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL);
N *pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL);
N}
N
N
N
N/**
N \brief Set Interrupt Vector
N \details Sets an interrupt vector in SRAM based interrupt vector table.
N The interrupt number can be positive to specify a device specific interrupt,
N or negative to specify a processor exception.
N Address 0 must be mapped to SRAM.
N \param [in] IRQn Interrupt number
N \param [in] vector Address of interrupt handler function
N */
N__STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
Xstatic __inline void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector)
N{
N uint32_t vectors = 0x0U;
N (* (int *) (vectors + ((int32_t)IRQn + NVIC_USER_IRQ_OFFSET) * 4)) = vector;
X (* (int *) (vectors + ((int32_t)IRQn + 16) * 4)) = vector;
N}
N
N
N/**
N \brief Get Interrupt Vector
N \details Reads an interrupt vector from interrupt vector table.
N The interrupt number can be positive to specify a device specific interrupt,
N or negative to specify a processor exception.
N \param [in] IRQn Interrupt number.
N \return Address of interrupt handler function
N */
N__STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn)
Xstatic __inline uint32_t __NVIC_GetVector(IRQn_Type IRQn)
N{
N uint32_t vectors = 0x0U;
N return (uint32_t)(* (int *) (vectors + ((int32_t)IRQn + NVIC_USER_IRQ_OFFSET) * 4));
X return (uint32_t)(* (int *) (vectors + ((int32_t)IRQn + 16) * 4));
N}
N
N
N/**
N \brief System Reset
N \details Initiates a system reset request to reset the MCU.
N */
N__NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void)
X__declspec(noreturn) static __inline void __NVIC_SystemReset(void)
N{
N __DSB(); /* Ensure all outstanding memory accesses included
X do { __schedule_barrier(); __dsb(0xF); __schedule_barrier(); } while (0U);
N buffered write are completed before reset */
N SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) |
X ((SCB_Type *) ((0xE000E000UL) + 0x0D00UL) )->AIRCR = ((0x5FAUL << 16U) |
N SCB_AIRCR_SYSRESETREQ_Msk);
X (1UL << 2U));
N __DSB(); /* Ensure completion of memory access */
X do { __schedule_barrier(); __dsb(0xF); __schedule_barrier(); } while (0U);
N
N for(;;) /* wait until reset */
N {
N __NOP();
X __nop();
N }
N}
N
N/*@} end of CMSIS_Core_NVICFunctions */
N
N
N/* ########################## FPU functions #################################### */
N/**
N \ingroup CMSIS_Core_FunctionInterface
N \defgroup CMSIS_Core_FpuFunctions FPU Functions
N \brief Function that provides FPU type.
N @{
N */
N
N/**
N \brief get FPU type
N \details returns the FPU type
N \returns
N - \b 0: No FPU
N - \b 1: Single precision FPU
N - \b 2: Double + Single precision FPU
N */
N__STATIC_INLINE uint32_t SCB_GetFPUType(void)
Xstatic __inline uint32_t SCB_GetFPUType(void)
N{
N return 0U; /* No FPU */
N}
N
N
N/*@} end of CMSIS_Core_FpuFunctions */
N
N
N
N/* ################################## SysTick function ############################################ */
N/**
N \ingroup CMSIS_Core_FunctionInterface
N \defgroup CMSIS_Core_SysTickFunctions SysTick Functions
N \brief Functions that configure the System.
N @{
N */
N
N#if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U)
X#if 1L && (0U == 0U)
N
N/**
N \brief System Tick Configuration
N \details Initializes the System Timer and its interrupt, and starts the System Tick Timer.
N Counter is in free running mode to generate periodic interrupts.
N \param [in] ticks Number of ticks between two interrupts.
N \return 0 Function succeeded.
N \return 1 Function failed.
N \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
N function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
N must contain a vendor-specific implementation of this function.
N */
N__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
Xstatic __inline uint32_t SysTick_Config(uint32_t ticks)
N{
N if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk)
X if ((ticks - 1UL) > (0xFFFFFFUL ))
N {
N return (1UL); /* Reload value impossible */
N }
N
N SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */
X ((SysTick_Type *) ((0xE000E000UL) + 0x0010UL) )->LOAD = (uint32_t)(ticks - 1UL);
N NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */
X __NVIC_SetPriority (SysTick_IRQn, (1UL << 2U) - 1UL);
N SysTick->VAL = 0UL; /* Load the SysTick Counter Value */
X ((SysTick_Type *) ((0xE000E000UL) + 0x0010UL) )->VAL = 0UL;
N SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
X ((SysTick_Type *) ((0xE000E000UL) + 0x0010UL) )->CTRL = (1UL << 2U) |
N SysTick_CTRL_TICKINT_Msk |
X (1UL << 1U) |
N SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
X (1UL );
N return (0UL); /* Function successful */
N}
N
N#endif
N
N/*@} end of CMSIS_Core_SysTickFunctions */
N
N
N
N
N#ifdef __cplusplus
S}
N#endif
N
N#endif /* __CORE_CM0_H_DEPENDANT */
N
N#endif /* __CMSIS_GENERIC */
L 129 "..\src\sdk\include\M0\ArmCM0.h" 2
N#include "system_ARMCM0.h" /* System Header */
L 1 "C:\Users\Markin\AppData\Local\Arm\Packs\ARM\CMSIS\5.5.1\Device\ARM\ARMCM0\Include\system_ARMCM0.h" 1
N/**************************************************************************//**
N * @file system_ARMCM0.h
N * @brief CMSIS Device System Header File for
N * ARMCM0 Device
N * @version V5.3.1
N * @date 09. July 2018
N ******************************************************************************/
N/*
N * Copyright (c) 2009-2018 Arm Limited. All rights reserved.
N *
N * SPDX-License-Identifier: Apache-2.0
N *
N * Licensed under the Apache License, Version 2.0 (the License); you may
N * not use this file except in compliance with the License.
N * You may obtain a copy of the License at
N *
N * www.apache.org/licenses/LICENSE-2.0
N *
N * Unless required by applicable law or agreed to in writing, software
N * distributed under the License is distributed on an AS IS BASIS, WITHOUT
N * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
N * See the License for the specific language governing permissions and
N * limitations under the License.
N */
N
N#ifndef SYSTEM_ARMCM0_H
N#define SYSTEM_ARMCM0_H
N
N#ifdef __cplusplus
Sextern "C" {
N#endif
N
Nextern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Clock) */
N
N
N/**
N \brief Setup the microcontroller system.
N
N Initialize the System and update the SystemCoreClock variable.
N */
Nextern void SystemInit (void);
N
N
N/**
N \brief Update SystemCoreClock variable.
N
N Updates the SystemCoreClock with current core Clock retrieved from cpu registers.
N */
Nextern void SystemCoreClockUpdate (void);
N
N#ifdef __cplusplus
S}
N#endif
N
N#endif /* SYSTEM_ARMCM0_H */
L 130 "..\src\sdk\include\M0\ArmCM0.h" 2
N
N/*----------------------------------------------------------------------------
N Define clocks
N *----------------------------------------------------------------------------*/
N#define XTAL (500000000UL) /* Oscillator frequency */
N
N#if FPGA_MODE
X#if 0
S#define SYSTEM_CLOCK (33300000U)
N#else
N/* 使用外部晶振时,系统时钟只能是100M,不使用外部晶振时,系统时钟可以是100M/80M*/
N#if EXTERN_24M
X#if 0
S#define SYSTEM_CLOCK (100000000U)
N#else
N#if CPU_CLK_100M
X#if 0
S#define SYSTEM_CLOCK (100000000U)
N#else
N#define SYSTEM_CLOCK (80000000U)
N#endif
N#endif
N#endif
N
N/* -------- End of section using anonymous unions and disabling warnings -------- */
N#if defined (__CC_ARM)
X#if 1L
N#pragma pop
N#elif defined (__ICCARM__)
X#elif 0L
S/* leave anonymous unions enabled */
S#elif (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
S#pragma clang diagnostic pop
S#elif defined (__GNUC__)
S/* anonymous unions are enabled by default */
S#elif defined (__TMS470__)
S/* anonymous unions are enabled by default */
S#elif defined (__TASKING__)
S#pragma warning restore
S#elif defined (__CSMC__)
S/* anonymous unions are enabled by default */
S#else
S#warning Not supported compiler type
N#endif
N
N/* In HS mode and when the DMA is used, all variables and data structures dealing
N with the DMA during the transaction process should be 4-bytes aligned */
N#define DMA_WORD_ALIGN_EN
N#ifdef DMA_WORD_ALIGN_EN
N#if defined (__GNUC__) /* GNU Compiler */
X#if 1L
N#define __ALIGN_END __attribute__ ((aligned (4)))
N#define __ALIGN_BEGIN
N#else
S#define __ALIGN_END
S#if defined (__CC_ARM) /* ARM Compiler */
S#define __ALIGN_BEGIN __align(4)
S#elif defined (__ICCARM__) /* IAR Compiler */
S#define __ALIGN_BEGIN
S#elif defined (__TASKING__) /* TASKING Compiler */
S#define __ALIGN_BEGIN __align(4)
S#endif /* __CC_ARM */
N#endif /* __GNUC__ */
N#else
S
S#define __ALIGN_BEGIN
S#define __ALIGN_END
S
S#define __ALIGN_END_1 __attribute__ ((aligned (1)))
N#endif /* DMA_WORD_ALIGN_EN */
N
N/* __packed keyword used to decrease the data type alignment to 1-byte */
N#if defined (__CC_ARM) /* ARM Compiler */
X#if 1L
N#define __packed __packed
N#elif defined (__ICCARM__) /* IAR Compiler */
X#elif 0L
S#define __packed __packed
S#elif defined ( __GNUC__ ) /* GNU Compiler */
S#define __packed __attribute__ ((__packed__))
S#define __weak __attribute__((weak))
S#elif defined (__TASKING__) /* TASKING Compiler */
S#define __packed __unaligned
N#endif /* __CC_ARM */
N
N#ifdef __cplusplus
S}
N#endif
N
N#endif /* ARMCM0_H */
L 21 "..\src\common\tau_log.h" 2
N
N/*******************************************************************************
N* 2.Global constant and macro definitions using #define
N*******************************************************************************/
N
N#ifdef LOG_TAG
S #undef LOG_TAG
N#endif
N#define LOG_TAG "tau_log"
N#define LOG_CURREN_LEVEL kLOG_LEVEL_DBG /* <20><><EFBFBD>ô<EFBFBD>ӡ<EFBFBD>ȼ<EFBFBD> TODO:ÿ<><C3BF>ģ<EFBFBD><C4A3><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ô<EFBFBD>ӡ<EFBFBD>ȼ<EFBFBD> */
N
N/*
N * Using the following three macros for conveniently logging.
N */
N#if EDA_MODE
X#if 0
S#define TAU_LOGD(format,...)
S#define TAU_LOGI(format,...)
S#define TAU_LOGE(format,...)
N#else
N#define TAU_LOGD(format,...) \
N do { \
N if (LOG_CURREN_LEVEL <= kLOG_LEVEL_DBG) { \
N LOG_printf("[%s] (%04d) " format, LOG_TAG, __LINE__, ##__VA_ARGS__); \
N }; \
N } while (0)
X#define TAU_LOGD(format,...) do { if (LOG_CURREN_LEVEL <= kLOG_LEVEL_DBG) { LOG_printf("[%s] (%04d) " format, LOG_TAG, __LINE__, ##__VA_ARGS__); }; } while (0)
N
N
N#define TAU_LOGI(format,...) \
N do { \
N if (LOG_CURREN_LEVEL <= kLOG_LEVEL_INF) { \
N LOG_printf("[%s] (%04d) " format, LOG_TAG, __LINE__, ##__VA_ARGS__); \
N }; \
N } while (0)
X#define TAU_LOGI(format,...) do { if (LOG_CURREN_LEVEL <= kLOG_LEVEL_INF) { LOG_printf("[%s] (%04d) " format, LOG_TAG, __LINE__, ##__VA_ARGS__); }; } while (0)
N
N#define TAU_LOGE(format,...) \
N do { \
N if (LOG_CURREN_LEVEL <= kLOG_LEVEL_ERR) { \
N LOG_printf("error [%s] (%04d) " format, LOG_TAG, __LINE__, ##__VA_ARGS__); \
N }; \
N } while (0)
X#define TAU_LOGE(format,...) do { if (LOG_CURREN_LEVEL <= kLOG_LEVEL_ERR) { LOG_printf("error [%s] (%04d) " format, LOG_TAG, __LINE__, ##__VA_ARGS__); }; } while (0)
N#endif
N
N/*******************************************************************************
N* 3.Global structures, unions and enumerations using typedef
N*******************************************************************************/
Ntypedef enum
N{
N kLOG_LEVEL_DBG = 0,
N kLOG_LEVEL_INF,
N kLOG_LEVEL_ERR,
N kLOG_LEVEL_NONE /* <20><><EFBFBD><EFBFBD>ӡ<EFBFBD>κβ<CEBA><CEB2><EFBFBD> */
N} log_level_t;
N
N/*******************************************************************************
N* 4.Global variable extern declarations
N*******************************************************************************/
N
N/*******************************************************************************
N* 5.Global function prototypes
N*******************************************************************************/
Nvoid LOG_printf(const char *fmt, ...);
N
N#endif
L 6 "..\src\app\main.c" 2
N#include "hal_system.h"
L 1 "..\src\sdk\include\hal_system.h" 1
N/*******************************************************************************
N*
N*
N* File: hal_system.h
N* Description hal 通用系统接口头文件
N* Version V0.1
N* Date 2021-05-21
N* Author lzy
N *******************************************************************************/
N#ifndef __HAL_SYSTEM_H__
N#define __HAL_SYSTEM_H__
N/*******************************************************************************
N* 1.Included files
N*******************************************************************************/
N#include "tau_common.h"
N
N/*******************************************************************************
N* 2.Global constant and macro definitions using #define
N*******************************************************************************/
N
N/*******************************************************************************
N* 3.Global structures, unions and enumerations using typedef
N*******************************************************************************/
N
N/*******************************************************************************
N* 4.Global variable extern declarations
N*******************************************************************************/
N
N/*******************************************************************************
N* 5.Global function prototypes
N*******************************************************************************/
N
N/**
N* @brief system 初始化
N* @param none
N* @retval none
N*/
Nvoid hal_system_init(uint32_t sysclk);
N
N/**
N* @brief system 初始化 console
N* @param baud_rate 波特率
N* @retval none
N*/
Nvoid hal_system_init_console(uint32_t baud_rate);
N
N/**
N* @brief mcu进入idle模式,等待中断唤醒
N* @param disable_systick: 进入idle时是否关闭systick(退出idle 恢复systick)
N* @retval none
N*/
Nvoid hal_system_idle_mode(bool disable_systick);
Xvoid hal_system_idle_mode(_Bool disable_systick);
N
N/**
N* @brief 注册systick回调函数
N* @param cb_func回调函数地址
N* @retval 无
N*/
Nvoid hal_system_register_systick_cb(fcb_type cb_func);
N
N/**
N* @brief 启动sys tickt
N* @param ms: sys tickt 间隔, 范围1-10ms
N* @retval true/false
N*/
Nbool hal_system_enable_systick(uint8_t ms);
X_Bool hal_system_enable_systick(uint8_t ms);
N
N/**
N* @brief 获取systickt
N* @param none
N* @retval 当前systickt值
N*/
Nbool hal_system_disable_systick(void);
X_Bool hal_system_disable_systick(void);
N
N/**
N* @brief 获取systickt
N* @param none
N* @retval 当前systickt值
N*/
Nuint32_t hal_system_get_tick(void);
N
N/**
N* @brief 进入deep sleep mode 模式, 等待AP_RSTN 唤醒
N* @param polarity true:上升沿唤醒, false:下降沿唤醒
N* @retval none
N*/
Nvoid hal_system_deep_sleep_mode(bool polarity);
Xvoid hal_system_deep_sleep_mode(_Bool polarity);
N
N/**
N* @brief 配置共享flash开关(使用过后注意关闭,常开功耗会增加)
N* @param enable:true:可通过F_SPI访问内部flash , false:不可通过F_SPI访问内部flash
N* @retval true/false
N*/
Nbool hal_system_share_flash_mode(bool enable);
X_Bool hal_system_share_flash_mode(_Bool enable);
N
N/**
N* @brief sleep mode 配置
N* @param enable
N* @retval none
N*/
Nvoid hal_system_sleep_mode(bool enable);
Xvoid hal_system_sleep_mode(_Bool enable);
N
N/**
N* @brief reset chip
N* @param none
N* @retval none
N*/
Nvoid hal_system_reset_chip(void);
N
N/**
N* @brief 开关PVD检测
N* @param none
N* @retval none
N*/
Nvoid hal_system_set_pvd(bool enable);
Xvoid hal_system_set_pvd(_Bool enable);
N
N/**
N* @brief VCC电源开关
N* 使用场景: VCC掉电13D与13M使用外灌电源时关闭内部VCC供电,防止电源倒灌
N* @param enable: true:打开CP, false:关闭CP
N* @retval none
N*/
Nvoid hal_system_set_vcc(bool enable);
Xvoid hal_system_set_vcc(_Bool enable);
N
N/**
N* @brief 用户字节数组形式从flash读取数据,按页读取每页1024字节
N* @param *usr_cfg_t_addr(数组首地址),
N usr_cfg_t_size(数组大小可以超过1024可以按页读也可连续跨页读)
N flash_page 页0~63
N* @retval bool 无
N*/
Nbool hal_system_flash_read(uint8_t *usr_cfg_t_addr, uint16_t usr_cfg_t_size, uint8_t flash_page);
X_Bool hal_system_flash_read(uint8_t *usr_cfg_t_addr, uint16_t usr_cfg_t_size, uint8_t flash_page);
N
N/**
N* @brief 用户字节数组形式存入flash(次数有限,不可频繁写入),按页写入每页1024字节
N* @param *usr_cfg_t_addr(数组首地址),
N usr_cfg_t_size(数组大小可以超过1024可以按页写也可连续跨页写入)
N 推荐按页顺序写入方式第一次必须从0页开始写入后续才可1~63任意页写入
N flash_page 写入页0~63
N* @retval bool 校验size是否超出
N*/
Nbool hal_system_flash_write(uint8_t *usr_cfg_t_addr, uint16_t usr_cfg_t_size, uint8_t flash_page);
X_Bool hal_system_flash_write(uint8_t *usr_cfg_t_addr, uint16_t usr_cfg_t_size, uint8_t flash_page);
N
N#if defined(ISP_568) || defined(ISP_368)
X#if 1L || 0L
N /**
N * @brief 控制DPHY内部校准开关
N * @param en: 使能开关
N * @retval none
N */
N void hal_system_set_phy_calibration(bool en);
X void hal_system_set_phy_calibration(_Bool en);
N#endif
N
N#endif //__HAL_SYSTEM_H__
L 7 "..\src\app\main.c" 2
N#include "board.h"
L 1 "..\src\board\board.h" 1
N/*******************************************************************************
N* Copyright (C) 2019-2022, 518/568 Systems (R),All Rights Reserved.
N*
N* File: board.h
N* Description: baord 初始化头文件
N* Version: V0.1
N* Date: 2020-01-08
N* Author: lzy
N *******************************************************************************/
N
N#ifndef __BOARD_H__
N#define __BOARD_H__
N
Nvoid board_Init(void);
N
N#endif
L 8 "..\src\app\main.c" 2
N#include "tau_delay.h"
L 1 "..\src\common\tau_delay.h" 1
N/**
N * File Name: tau_delay.h
N *
N *
N *
N * Author: Fortsense 3D Firmware Team
N *
N * Date: 2020/12/04
N *
N * Project: Taurus
N *
N * Description:
N *
N * HISTORY:
N**/
N#ifndef _DELAY_H_
N#define _DELAY_H_
N#include "stdint.h"
N
N/**
N* @brief delay ms <20><><EFBFBD><EFBFBD>,<2C><><EFBFBD><EFBFBD>2%<25><><EFBFBD><EFBFBD>
N* @param ms:delayʱ<79><CAB1>
N* @retval none
N*/
Nvoid delayMs(uint32_t ms);
N
N/**
N* @brief delay us <20><><EFBFBD><EFBFBD>,<2C><><EFBFBD><EFBFBD>2%<25><><EFBFBD><EFBFBD>
N* @param us:delayʱ<79><CAB1>
N* @retval none
N*/
Nvoid delayUs(uint32_t us);
N
N#endif
L 9 "..\src\app\main.c" 2
N
N
N
N//test_cfg_global.h file choice what you want test or completely demo of S8 or S8+ Felix
N
Nint main()
N{
N// hal_system_init();
N board_Init();
N
N while (1)
N {
N#if _DEMO_S8_EN
X#if 1
N ap_demo();
N#endif
N while (1);
N }
N}